Skip to main content
Log in

Construction of a novel sugar alcohol-inducible expression system in Bacillus licheniformis

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Bacillus licheniformis is an important industrial microorganism that can utilize a wide range of biomass. However, the lack of expression elements in B. licheniformis, especially regulated promoters, significantly restricts its applications. In this study, two promoters involved in the sugar alcohol uptake pathway, PmtlA and PmtlR, were characterized and developed as regulated promoters for expression. The results showed that mannitol, mannose, sorbitol, sorbose, and arabinose can act as inducers to activate expression from PmtlA at different levels. The induction by sorbitol was the strongest, and the optimal induction conditions were 15 g/L sorbitol during mid-logarithmic growth at 28 °C. In this work, the palindrome-like sequence ‘TTGTCA-cacggctcc-TGCCAA’ in PmtlA was identified as the binding site of the MtlR protein. This study helps to enrich the known inducible expression systems in B. licheniformis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alcantara C, Sarmiento-Rubiano LA, Monedero V, Deutscher J, Perez-Martinez G, Yebra MJ (2008) Regulation of Lactobacillus casei sorbitol utilization genes requires DNA-binding transcriptional activator GutR and the conserved protein GutM. Appl Environ Microbiol 74:5731–5740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beltran-Aguilar AG, Peraza-Echeverria S, López-Ochoa LA, Borges-Argáez IC, Herrera-Valencia VA (2019) A novel salt-inducible CrGPDH3 promoter of the microalga Chlamydomonas reinhardtii for transgene overexpression. Appl Microbiol Biotechnol 103:3487–3499

    Article  CAS  PubMed  Google Scholar 

  • Bernlohr RW, Novelli GD (1960) Some characteristics of bacitracin production by Bacillus licheniformis. Arch Biochem Biophys 87:232–238

    Article  CAS  Google Scholar 

  • Boeck RD, Sarmiento-Rubiano LA, Nadal I, Monedero V, Gaspar P-M, María JY (2010) Sorbitol production from lactose by engineered Lactobacillus casei deficient in sorbitol transport system and mannitol-1-phosphate dehydrogenase. Appl Microbiol Biotechnol 85:1915–1922

    Article  CAS  PubMed  Google Scholar 

  • Bouraoui H, Ventroux M, Noirot-Gros MF, Deutscher J, Joyet P (2013) Membrane sequestration by the EIIB domain of the mannitol permease MtlA activates the Bacillus subtilis mtl operon regulator MtlR. Mol Microbiol 87:789–801

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Choi ES, Sohn JH, Rhee SK (1994) Optimization of the expression system using galactose-inducible promoter for the production of anticoagulant hirudin in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 42:587–594

    Article  CAS  PubMed  Google Scholar 

  • Ciarán LK, Taylor GM, Hitchcock A, Antonio TM, Heap JT (2018) A rhamnose-inducible system for precise and temporal control of gene expression in Cyanobacteria. ACS Synth Biol 7:1056–1066

    Article  CAS  Google Scholar 

  • Deis RC, Kearsley DMW (2012) Sweeteners and sugar alternatives in food technology. In: Helen M (ed) Sorbitol and mannitol. 2nd edn. Blackwell, Iowa, pp 331–346

  • Franco IS, Mota LJ, Soares CM, De Sa-Nogueira I (2007) Probing key DNA contacts in AraR-mediated transcriptional repression of the Bacillus subtilis arabinose regulon. Nucleic Acids Res 35:4755–4766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galinier A, Deutscher J (2017) Sophisticated regulation of transcriptional factors by the bacterial phosphoenolpyruvate: sugar phosphotransferase system. J Mol Biol 429:773–789

    Article  CAS  PubMed  Google Scholar 

  • Henstra SA, Duurkens RH, Robillard GT (2000) Multiple phosphorylation events regulate the activity of the mannitol transcriptional regulator MtlR of the Bacillus stearothermophilus phosphoenolpyruvate-dependent mannitol phosphotransferase system. J Biol Chem 275:7037–7044

    Article  CAS  PubMed  Google Scholar 

  • Henstra SA, Tuinhof M, Duurkens RH, Robillard GT (1999) The Bacillus stearothermophilus mannitol regulator, MtlR, of the phosphotransferase system: a DNA-binding protein, regulated by HPr and IICBmtl-dependent phosphorylation. J Biol Chem 274:4754–4763

    Article  CAS  PubMed  Google Scholar 

  • Heravi KM, Wenzel M, Altenbuchner J (2011) Regulation of mtl, operon promoter of Bacillus subtilis: requirements of its use in expression vectors. Microb Cell Factories 10:83–83

    Article  CAS  Google Scholar 

  • Hoffmann J, Altenbuchner J (2015) Functional characterization of the mannitol promoter of Pseudomonas fluorescens DSM 50106 and its application for a mannitol-inducible expression system for Pseudomonas putida KT2440. PLoS One 10:e0133248

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Iii CEH, Lewis JK, Leslie I, Jr JAP, Tsai LB, Sachdev R (1995) Assessing post-induction cellular response in a recombinant E. coli, lactose-inducible system by monitoring β-galactosidase levels. Biotechnol Lett 17:1025–1030

  • Ikram-ul-Haq AH, Iqbal J, Qadeer MA (2003) Production of alpha amylase by Bacillus licheniformis using an economical medium. Bioresour Technol 87:57–61

    Article  CAS  PubMed  Google Scholar 

  • Inacio JM (2003) Distinct molecular mechanisms involved in carbon catabolite repression of the arabinose regulon in Bacillus subtilis. Microbiology 149:2345–2355

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Lee YJ, Choi S, Park SB, Kim HS (2018) Development of an alcohol-inducible gene expression system for recombinant protein expression in Chlamydomonas reinhardtii. J Appl Phycol 30:1–8

    Article  CAS  Google Scholar 

  • Lee SJ, Pan JG, Park SH, Choi SK (2010) Development of a stationary phase-specific autoinducible expression system in Bacillus subtilis. J Biotechnol 149:16–20

    Article  CAS  PubMed  Google Scholar 

  • Li H, Liao JC (2015) A synthetic anhydrotetracycline-controllable gene expression system in Ralstonia eutropha H16. ACS Synth Biol 4:101–106

    Article  CAS  PubMed  Google Scholar 

  • Li YR, Ke J, Zhang L, Ding ZY, Gu ZH, Shi GY (2018) Development of an inducible secretory expression system in Bacillus licheniformis based on an engineered xylose operon. J Agric Food Chem 66:9456–9464

    Article  CAS  PubMed  Google Scholar 

  • Liu XJ, Prat S, Willmitzer L, Frommer WB (1990) Cis regulatory elements directing tuber-specific and sucrose-inducible expression of a chimeric class I patatin promoter/Gus-gene fusion. Mol Gen Genet 223:401–406

    Article  CAS  PubMed  Google Scholar 

  • Mabrouk SS, Hashem AM, El-Shayeb NMA, Ismail AMS, Abdel-Fattah AF (1999) Optimization of alkaline protease productivity by Bacillus licheniformis ATCC 21415. Bioresour Technol 69:155–159

    Article  CAS  Google Scholar 

  • Martin-Verstraete IM, Débarbouillé KA, Rapoport G (1990) Levanase operon of Bacillus subtilis includes a fructose-specific phosphotransferase system regulating the expression of the operon. J Mol Biol 214:657–671

    Article  CAS  PubMed  Google Scholar 

  • Mcgonigal T, Bodelle P, Schopp C, Sarthy AV (1998) Construction of a sorbitol-based vector for expression of heterologous proteins in Saccharomyces cerevisiae. Appl Environ Microbiol 64:793–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ming YM, Wei ZW, Lin CY, Sheng GY (2010) Development of a Bacillus subtilis expression system using the improved Pglv promoter. Microb Cell Factories 9:55

    Article  CAS  Google Scholar 

  • Oh BR, Hong WK, Heo SY, Luo LH, Kondo A, Seo JW (2013) The production of 1,3-propanediol from mixtures of glycerol and glucose by a Klebsiella pneumoniae mutant deficient in carbon catabolite repression. Bioresour Technol 130:719–724

    Article  CAS  PubMed  Google Scholar 

  • Orriss GL, Erni B, Schirmer T (2003) Crystal structure of the IIB(Sor) domain of the sorbose permease from Klebsiella pneumoniae solved to 1.75A resolution. J Mol Biol 327:1111–1119

    Article  CAS  PubMed  Google Scholar 

  • Phan TTP, Schumann W (2007) Development of a glycine-inducible expression system for Bacillus subtilis. J Biotechnol 128:486–499

    Article  CAS  PubMed  Google Scholar 

  • Reindert N, Cordula L, Mariska VH, Hamoen LW, Kuipers OP (2007) Heterologous production and secretion of Clostridium perfringens beta-toxoid in closely related gram-positive hosts. J Biotechnol 127:361–372

    Article  CAS  Google Scholar 

  • Rygus T, Hillen W (1991) Inducible high-level expression of heterologous genes in Bacillus megaterium using the regulatory elements of the xylose-utilization operon. Appl Microbiol Biotechnol 35:594–599

    Article  CAS  PubMed  Google Scholar 

  • Schägger H, Jagow GV (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166:368–379

    Article  PubMed  Google Scholar 

  • Schumacher MA, Allen GS, Diel M, Seidel G, Hillen W, Brennan RG (2004) Structural basis for allosteric control of the transcription regulator CcpA by the phosphoprotein HPr-Ser46-P. Cell 118:731–741

    Article  CAS  PubMed  Google Scholar 

  • Song YF, Nikoloff JM, Fu G, Chen JQ, Li QG, Xie NZ, Zheng P, Sun JB, Zhang DW (2016) Promoter screening from Bacillus subtilis in various conditions hunting for synthetic biology and industrial applications. PLoS One 11:e0158447

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stolz B, Huber M, MarkoviÄ-Housley Z, Erni B (1993) The mannose transporter of Escherichia coli. Structure and function of the EIIABman subunit. J Biol Chem 268:27094–27099

    CAS  PubMed  Google Scholar 

  • Sun T, Altenbuchner J (2010) Characterization of a mannose utilization system in Bacillus subtilis. J Bacteriol 192:2128–2139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Talbot JM, Fisher KD (1978) The need for special foods and sugar substitutes by individuals with diabetes mellitus. Diabetes Care 1:231–240

    Article  CAS  PubMed  Google Scholar 

  • Trung NT, Hung NM, Thuan NH, Canh NX, Britta J (2019) An auto-inducible phosphate-controlled expression system of Bacillus licheniformis. BMC Biotechnol:19

  • Wenzel M, Altenbuchner J (2013) The Bacillus subtilis mannose regulator, ManR, a DNA-binding protein regulated by HPr and its cognate PTS transporter ManP. Mol Microbiol 88:562–576

    Article  CAS  PubMed  Google Scholar 

  • Weickert MJ, Chambliss GH (1990) Site-directed mutagenesis of a catabolite repression operator sequence in Bacillus subtilis. Proc Natl Acad Sci U S A 87:6238–6242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu H, Lee J, Karanjikar M, San KY (2015) Simultaneous utilization of glucose and mannose from woody hydrolysate for free fatty acid production by metabolically engineered Escherichia coli. Bioresour Technol 185:431–435

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Zhang L, Huang H, Yang C, Yang S, Gu Y (2017a) A flexible binding site architecture provides new insights into CcpA global regulation in gram-positive bacteria. mBio 8:e02004-16

  • Yang YF, Li YR, Zhang L, Li Y, Gu ZH, Ding ZY, Shi GY (2017b) Inducible heterogenous expression of the bacterial maltogenic amylase in Bacillus subtilis. Microbiol chin 44:263–273

    Google Scholar 

  • Yue J, Fu G, Zhang D, Wen J (2017) A new maltose-inducible high-performance heterologous expression system in Bacillus subtilis. Biotechnol Lett 39:1237–1244

    Article  CAS  PubMed  Google Scholar 

  • Yurimoto H, Komeda T, Lim CR, Nakagawa T, Kondo K, Kato N (2000) Regulation and evaluation of five methanol-inducible promoters in the methylotrophic yeast Candida boidinii. Biochim Biophys Acta 1493:56–63

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the National Key Research & Development Program of China (2018YFA0900300,  2018YFA0900304 and 2016YFD0401404), the National Natural Foundation of China (31401674), Postgraduate Research & Practice Innovation Program of Jiangsu Province (SJCX19_0771), the National First-Class Discipline Program of Light Industry Technology and Engineering (LITE2018-22), and the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guiyang Shi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 200 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, F., Li, Y., Zhang, Y. et al. Construction of a novel sugar alcohol-inducible expression system in Bacillus licheniformis. Appl Microbiol Biotechnol 104, 5409–5425 (2020). https://doi.org/10.1007/s00253-020-10618-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-020-10618-8

Keywords

Navigation