Skip to main content

Advertisement

Log in

Metabolic engineering of microorganisms for the production of ethanol and butanol from oxides of carbon

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The utilized biomass is an important consideration for sustainable biofuel production. To avoid competing with food needs, researchers have turned their attention to non-food lignocellulosic biomasses as potential feedstocks for biofuel production. However, the saccharification of a lignocellulosic biomass produces a large amount of lignin as waste. To overcome this hurdle, biomass gasification has been suggested as an alternative to saccharification. During biomass gasification, oxides of carbon (CO, CO2) and hydrogen are produced as a major product. Accordingly, microorganisms capable of utilizing these oxides of carbon have gained attention as hosts for the production of biofuels, such as ethanol and butanol. In this work, we reviewed the Calvin cycle and Wood-Ljungdahl pathway for utilizing oxides of carbon in cyanobacteria and acetogens, respectively, and discussed the metabolic engineering strategies that may be used to produce ethanol and butanol from oxides of carbon through these routes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aboulnaga E-H, Pinkenburg O, Schiffels J, El-Refai A, Buckel W, Selmer T (2013) Effect of an oxygen-tolerant bifurcating butyryl coenzyme A dehydrogenase/electron-transferring flavoprotein complex from Clostridium difficile on butyrate production in Escherichia coli. J Bacteriol 195:3704–3713

    CAS  PubMed Central  Google Scholar 

  • Abrini J, Naveau H, Nyns E-J (1994) Clostridium autoethanogenum, sp. nov., an anaerobic bacterium that produces ethanol from carbon monoxide. Arch Microbiol 161(4):345–351

    CAS  Google Scholar 

  • Berlin A, Maximenko V, Gilkes N, Saddler J (2007) Optimization of enzyme complexes for lignocellulose hydrolysis. Biotechnol Bioeng 97(2):287–296. https://doi.org/10.1002/bit.21238

    Article  CAS  Google Scholar 

  • Bertsch J, Müller V (2015) Bioenergetic constraints for conversion of syngas to biofuels in acetogenic bacteria. Biotechnol Biofuels 8(1):210

    PubMed  PubMed Central  Google Scholar 

  • Berzin V, Tyurin M, Kiriukhin M (2013) Selective n-butanol production by Clostridium sp. MTButOH1365 during continuous synthesis gas fermentation due to expression of synthetic thiolase, 3-hydroxy butyryl-CoA dehydrogenase, crotonase, butyryl-CoA dehydrogenase, butyraldehyde dehydrogenase, and NAD-dependent butanol dehydrogenase. Appl Biochem Biotechnol 169(3):950–959. https://doi.org/10.1007/s12010-012-0060-7

    Article  CAS  PubMed  Google Scholar 

  • Calvin M, Benson AA (1948) The path of carbon in photosynthesis. Science 107:476-480. https://doi.org/10.1126/science.107.2784.476

    CAS  PubMed  Google Scholar 

  • Cheng C, Li W, Lin M, Yang S-T (2019) Metabolic engineering of Clostridium carboxidivorans for enhanced ethanol and butanol production from syngas and glucose. Bioresour Technol 284:415–423

    CAS  PubMed  Google Scholar 

  • Cherubini F (2010) The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energy Convers Manag 51(7):1412–1421

    CAS  Google Scholar 

  • Cho DH, Lee YJ, Um Y, Sang BI, Kim YH (2009) Detoxification of model phenolic compounds in lignocellulosic hydrolysates with peroxidase for butanol production from Clostridium beijerinckii. Appl Microbiol Biotechnol 83(6):1035–1043. https://doi.org/10.1007/s00253-009-1925-8

    Article  CAS  PubMed  Google Scholar 

  • Choi YN, Park JM (2016) Enhancing biomass and ethanol production by increasing NADPH production in Synechocystis sp. PCC 6803. Bioresour Technol 213:54–57. https://doi.org/10.1016/j.biortech.2016.02.056

    Article  CAS  PubMed  Google Scholar 

  • Choi EB, Lee MW, Park JE, Lee JY, Hong CO, Lee SM, Kim YG, Kim KK (2017a) Photodynamic apoptosis and antioxidant activities of Brassica napus extracts in U937 and SK-HEP-1 cells. Appl Biol Chem 60(4):427–435

    CAS  Google Scholar 

  • Choi JH, Kim Y-G, Lee YK, Pack SP, Jung JY, Jang K-S (2017b) Chemical characterization of dissolved organic matter in moist acidic tussock tundra soil using ultra-high resolution 15T FT-ICR mass spectrometry. Biotechnol Bioprocess Eng 22(5):637–646

    CAS  Google Scholar 

  • Choi YY, Hong M-E, Chang WS, Sim SJ (2019) Autotrophic biodiesel production from the thermotolerant microalga Chlorella sorokiniana by enhancing the carbon availability with temperature adjustment. Biotechnol Bioprocess Eng 24(1):223–231

    CAS  Google Scholar 

  • Demmer JK, Pal Chowdhury N, Selmer T, Ermler U, Buckel W (2017) The semiquinone swing in the bifurcating electron transferring flavoprotein/butyryl-CoA dehydrogenase complex from Clostridium difficile. Nat Commun 8:1577

    PubMed  PubMed Central  Google Scholar 

  • Deng MD, Coleman JR (1999) Ethanol synthesis by genetic engineering in cyanobacteria. Appl Environ Microbiol 65(2):523–528

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dexter J, Fu P (2009) Metabolic engineering of cyanobacteria for ethanol production. Energy Environ Sci 2(8):857–864. https://doi.org/10.1039/b811937f

    Article  CAS  Google Scholar 

  • Dexter J, Armshaw P, Sheahan C, Pembroke JT (2015) The state of autotrophic ethanol production in cyanobacteria. J Appl Microbiol 119(1):11–24. https://doi.org/10.1111/jam.12821

    Article  CAS  PubMed  Google Scholar 

  • Durre P, Eikmanns BJ (2015) C1-carbon sources for chemical and fuel production by microbial gas fermentation. Curr Opin Biotechnol 35:63–72. https://doi.org/10.1016/j.copbio.2015.03.008

    Article  CAS  PubMed  Google Scholar 

  • Ezeji TC, Qureshi N, Blaschek HP (2007) Production of acetone butanol (AB) from liquefied corn starch, a commercial substrate, using Clostridium beijerinckii coupled with product recovery by gas stripping. J Ind Microbiol Biotechnol 34(12):771–777

    CAS  PubMed  Google Scholar 

  • Fast AG, Papoutsakis ET (2012) Stoichiometric and energetic analyses of non-photosynthetic CO2-fixation pathways to support synthetic biology strategies for production of fuels and chemicals. Curr Opin Chem Eng 1(4):380–395

    Google Scholar 

  • Fontaine L, Meynial-Salles I, Girbal L, Yang X, Croux C, Soucaille P (2002) Molecular characterization and transcriptional analysis of adhE2, the gene encoding the NADH-dependent aldehyde/alcohol dehydrogenase responsible for butanol production in alcohologenic cultures of Clostridium acetobutylicum ATCC 824. J Bacteriol 184(3):821–830

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Z, Zhao H, Li Z, Tan X, Lu X (2012) Photosynthetic production of ethanol from carbon dioxide in genetically engineered cyanobacteria. Energy Environ Sci 5(12):9857–9865. https://doi.org/10.1039/C2EE22675H

    Article  CAS  Google Scholar 

  • Grigorieva G, Shestakov S (1982) Transformation in the cyanobacterium Synechocystis sp. 6803. FEMS Microbiol Lett 13(4):367–370

    CAS  Google Scholar 

  • Gui MM, Lee K, Bhatia S (2008) Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock. Energy 33(11):1646–1653

    CAS  Google Scholar 

  • Ha S-J, Galazka JM, Kim SR, Choi J-H, Yang X, Seo J-H, Glass NL, Cate JH, Jin Y-S (2011) Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation. Proc Natl Acad Sci U S A 108(2):504–509

    CAS  PubMed  Google Scholar 

  • Harris L, Blank L, Desai R, Welker N, Papoutsakis E (2001) Fermentation characterization and flux analysis of recombinant strains of Clostridium acetobutylicum with an inactivated solR gene. J Ind Microbiol Biotechnol 27(5):322–328

    CAS  PubMed  Google Scholar 

  • Im HS, Kim C, Song YE, Baek J, Im CH, Kim JR (2019) Isolation of novel CO converting microorganism using zero valent iron for a bioelectrochemical system (BES). Biotechnol Bioprocess Eng 24(1):232–239

    CAS  Google Scholar 

  • Jablonsky J, Bauwe H, Wolkenhauer O (2011) Modeling the Calvin-Benson cycle. BMC Syst Biol 5:185. https://doi.org/10.1186/1752-0509-5-185

    Article  PubMed  PubMed Central  Google Scholar 

  • Jang YS, Kim B, Shin JH, Choi YJ, Choi S, Song CW, Lee J, Park HG, Lee SY (2012) Bio-based production of C2-C6 platform chemicals. Biotechnol Bioeng 109(10):2437–2459. https://doi.org/10.1002/bit.24599

    Article  CAS  PubMed  Google Scholar 

  • Jin H, Chen L, Wang J, Zhang W (2014) Engineering biofuel tolerance in non-native producing microorganisms. Biotechnol Adv 32(2):541–548. https://doi.org/10.1016/j.biotechadv.2014.02.001

    Article  CAS  PubMed  Google Scholar 

  • Jones DT, Woods DR (1986) Acetone-butanol fermentation revisited. Microbiol Rev 50(4):484–524

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jones SW, Fast AG, Carlson ED, Wiedel CA, Au J, Antoniewicz MR, Papoutsakis ET, Tracy BP (2016) CO2 fixation by anaerobic non-photosynthetic mixotrophy for improved carbon conversion. Nat Commun 7:12800. https://doi.org/10.1038/ncomms12800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamm B, Kamm M, Gruber PR, Kromus S (2006) Biorefinery systems–an overview

  • Kaparaju P, Serrano M, Thomsen AB, Kongjan P, Angelidaki I (2009) Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Bioresour Technol 100(9):2562–2568. https://doi.org/10.1016/j.biortech.2008.11.011

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Ryu J, Huh IY, Hong SK, Kang HA, Chang YK (2014) Ethanol production from galactose by a newly isolated Saccharomyces cerevisiae KL17. Bioprocess Biosyst Eng 37(9):1871–1878. https://doi.org/10.1007/s00449-014-1161-1

    Article  CAS  PubMed  Google Scholar 

  • Kim E-A, Lee S-Y, Lee S-Y (2016a) Quality characteristics of steamed rice bread prepared with different contents of proteolytic enzyme. Appl Biol Chem 59(1):95–102

    CAS  Google Scholar 

  • Kim M-S, Woo M-H, Chang Y-H, Chung N, Kim J-S (2016b) Biochemical characterization of a noble xylanase from Paenibacillus sp. EC116. Appl Biol Chem 59(2):313–320

    CAS  Google Scholar 

  • Kim SU, Ruangcharus C, Kumar S, Lee HH, Park HJ, Jung ES, Hong CO (2019) Nitrous oxide emission from upland soil amended with different animal manures. Appl Biol Chem 62(1):8

    Google Scholar 

  • Köpke M, Held C, Hujer S, Liesegang H, Wiezer A, Wollherr A, Ehrenreich A, Liebl W, Gottschalk G, Dürre P (2010) Clostridium ljungdahlii represents a microbial production platform based on syngas. Proc Natl Acad Sci U S A 107(29):13087–13092

    PubMed  PubMed Central  Google Scholar 

  • Krishna SH, Reddy TJ, Chowdary G (2001) Simultaneous saccharification and fermentation of lignocellulosic wastes to ethanol using a thermotolerant yeast. Bioresour Technol 77(2):193–196

    CAS  Google Scholar 

  • Lai MC, Lan EI (2015) Advances in metabolic engineering of cyanobacteria for photosynthetic biochemical production. Metabolites 5(4):636–658. https://doi.org/10.3390/metabo5040636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lan EI, Liao JC (2011) Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide. Metab Eng 13(4):353–363. https://doi.org/10.1016/j.ymben.2011.04.004

    Article  CAS  PubMed  Google Scholar 

  • Lan EI, Liao JC (2012) ATP drives direct photosynthetic production of 1-butanol in cyanobacteria. Proc Natl Acad Sci U S A 109(16):6018–6023. https://doi.org/10.1073/pnas.1200074109

    Article  PubMed  PubMed Central  Google Scholar 

  • Lan EI, Ro SY, Liao JC (2013) Oxygen-tolerant coenzyme A-acylating aldehyde dehydrogenase facilitates efficient photosynthetic n-butanol biosynthesis in cyanobacteria. Energy Environ Sci 6(9):2672–2681. https://doi.org/10.1039/C3EE41405A

    Article  CAS  Google Scholar 

  • Lee HR, Kazlauskas RJ, Park TH (2017) Mild pretreatment of yellow poplar biomass using sequential dilute acid and enzymatically-generated peracetic acid to enhance cellulase accessibility. Biotechnol Bioprocess Eng 22(4):405–412

    CAS  Google Scholar 

  • Liew F, Henstra AM, Kpke M, Winzer K, Simpson SD, Minton NP (2017) Metabolic engineering of Clostridium autoethanogenum for selective alcohol production. Metab Eng 40:104–114. https://doi.org/10.1016/j.ymben.2017.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lora JH, Glasser WG (2002) Recent industrial applications of lignin: a sustainable alternative to nonrenewable materials. J Polym Environ 10(1):39–48. https://doi.org/10.1023/a:1021070006895

    Article  CAS  Google Scholar 

  • Luan G, Qi Y, Wang M, Li Z, Duan Y, Tan X, Lu X (2015) Combinatory strategy for characterizing and understanding the ethanol synthesis pathway in cyanobacteria cell factories. Biotechnol Biofuels 8:184. https://doi.org/10.1186/s13068-015-0367-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Machado IM, Atsumi S (2012) Cyanobacterial biofuel production. J Biotechnol 162(1):50–56. https://doi.org/10.1016/j.jbiotec.2012.03.005

    Article  CAS  PubMed  Google Scholar 

  • Madihah M, Ariff A, Sahaid K, Suraini A, Karim M (2001) Direct fermentation of gelatinized sago starch to acetone–butanol–ethanol by Clostridium acetobutylicum. World J Microbiol Biotechnol 17(6):567–576

    CAS  Google Scholar 

  • Marchal R, Rebeller M, Vandecasteele J (1984) Direct bioconversion of alkali-pretreated straw using simultanesous enzymatic hydrolysis and acetone-butanol fermentation. Biotechnol Lett 6(8):523–528

    CAS  Google Scholar 

  • Mi S, Gu C, Wu P, Liu H, Yan X, Li D, Tang X, Duan X, Wang G, Zhang J (2018) Improvement of butanol production by the development and co-culture of C. acetobutylicum TSH1 and B. cereus TSH2. Appl Microbiol Biotechnol 102:6753–6763

    CAS  PubMed  Google Scholar 

  • Mock J, Zheng Y, Mueller AP, Ly S, Tran L, Segovia S, Nagaraju S, Köpke M, Dürre P, Thauer RK (2015) Energy conservation associated with ethanol formation from H2 and CO2 in Clostridium autoethanogenum involving electron bifurcation. J Bacteriol 197(18):2965–2980

    CAS  PubMed  PubMed Central  Google Scholar 

  • Namakoshi K, Nakajima T, Yoshikawa K, Toya Y, Shimizu H (2016) Combinatorial deletions of glgC and phaCE enhance ethanol production in Synechocystis sp. PCC 6803. J Biotechnol 239:13–19. https://doi.org/10.1016/j.jbiotec.2016.09.016

    Article  CAS  PubMed  Google Scholar 

  • Nishiguchi H, Hiasa N, Uebayashi K, Liao J, Shimizu H, Matsuda F (2019) Transomics data-driven, ensemble kinetic modeling for system-level understanding and engineering of the cyanobacteria central metabolism. Metab Eng 52:273–283

    CAS  PubMed  Google Scholar 

  • Noh HJ, Woo JE, Lee SY, Jang Y-S (2018) Metabolic engineering of Clostridium acetobutylicum for the production of butyl butyrate. Appl Microbiol Biotechnol 102:8319–8327

    CAS  PubMed  Google Scholar 

  • Noh HJ, Lee SY, Jang Y-S (2019) Microbial production of butyl butyrate, a flavor and fragrance compound. Appl Microbiol Biotechnol 103:2079–2086

    CAS  PubMed  Google Scholar 

  • Palenik B, Brahamsha B, Larimer F, Land M, Hauser L, Chain P, Lamerdin J, Regala W, Allen E, McCarren J (2003) The genome of a motile marine Synechococcus. Nature 424(6952):1037–1042

    CAS  PubMed  Google Scholar 

  • Park S, Kim H, Cho S, You G, Oh HB, Han JH, Lee J (2019) Enhanced incorporation of gaseous CO2 to succinate by a recombinant Escherichia coli W3110. Biotechnol Bioprocess Eng:1–6

  • Perez J, Munoz-Dorado J, de la Rubia T, Martinez J (2002) Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int Microbiol 5(2):53–63. https://doi.org/10.1007/s10123-002-0062-3

    Article  CAS  PubMed  Google Scholar 

  • Qureshi N, Saha BC, Dien B, Hector RE, Cotta MA (2010) Production of butanol (a biofuel) from agricultural residues: part I–use of barley straw hydrolysate. Biomass Bioenergy 34(4):559–565

    CAS  Google Scholar 

  • Raines CA (2003) The Calvin cycle revisited. Photosynth Res 75:1):1–1)10. https://doi.org/10.1023/A:1022421515027

    Article  PubMed  Google Scholar 

  • Sari M, Chung Y, Agatha F, Kim HK (2019) Evaluation of antioxidant and antimicrobial activity of phenolic lipids produced by the transesterification of 4-hydroxyphenylacetic acid and triglycerides. Appl Biol Chem 62(1):5

    Google Scholar 

  • Sasaki M, Kabyemela B, Malaluan R, Hirose S, Takeda N, Adschiri T, Arai K (1998) Cellulose hydrolysis in subcritical and supercritical water. J Supercrit Fluids 13(1):261–268. https://doi.org/10.1016/S0896-8446(98)00060-6

    Article  CAS  Google Scholar 

  • Schiel-Bengelsdorf B, Dürre P (2012) Pathway engineering and synthetic biology using acetogens. FEBS Lett 586(15):2191–2198

    CAS  PubMed  Google Scholar 

  • Smachetti MES, Cenci MP, Salerno GL, Curatti L (2019) Ethanol and protein production from minimally processed biomass of a genetically-modified cyanobacterium over-accumulating sucrose. Bioresour Technol Rep 5:230–237

    Google Scholar 

  • Tamoi M, Miyazaki T, Fukamizo T, Shigeoka S (2005) The Calvin cycle in cyanobacteria is regulated by CP12 via the NAD(H)/NADP(H) ratio under light/dark conditions. Plant J 42(4):504–513

    CAS  PubMed  Google Scholar 

  • Tanner RS, Miller LM, Yang D (1993) Clostridium ljungdahlii sp. nov., an acetogenic species in clostridial rRNA homology group I. Int J Syst Evol Microbiol 43(2):232–236

    CAS  Google Scholar 

  • Thang VH, Kanda K, Kobayashi G (2010) Production of acetone-butanol-ethanol (ABE) in direct fermentation of cassava by Clostridium saccharoperbutylacetonicum N1-4. Appl Biochem Biotechnol 161(1–8):157–170. https://doi.org/10.1007/s12010-009-8770-1

    Article  CAS  PubMed  Google Scholar 

  • Ukpong MN, Atiyeh HK, De Lorme MJ, Liu K, Zhu X, Tanner RS, Wilkins MR, Stevenson BS (2012) Physiological response of Clostridium carboxidivorans during conversion of synthesis gas to solvents in a gas-fed bioreactor. Biotechnol Bioeng 109(11):2720–2728

    CAS  PubMed  Google Scholar 

  • Woo JE, Lee SY, Jang Y-S (2018) Effects of nutritional enrichment on acid production from degenerated (non-solventogenic) Clostridium acetobutylicum strain M5. Appl Biol Chem 61(4):469–472

    CAS  Google Scholar 

  • Zhang T, Zhao B, Chen Q, Peng X, Yang D, Qiu F (2019) Layered double hydroxide functionalized biomass carbon fiber for highly efficient and recyclable fluoride adsorption. Appl Biol Chem 62(1):12

    Google Scholar 

Download references

Funding

This work was supported by a grant from the Ministry of Science and ICT (MSIT) through the National Research Foundation (NRF) of Korea (NRF-2016R1D1A3B04933184).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Sin Jang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Woo, J., Jang, YS. Metabolic engineering of microorganisms for the production of ethanol and butanol from oxides of carbon. Appl Microbiol Biotechnol 103, 8283–8292 (2019). https://doi.org/10.1007/s00253-019-10072-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-019-10072-1

Keywords

Navigation