Skip to main content
Log in

Comparative transcriptomes reveal novel evolutionary strategies adopted by Saccharomyces cerevisiae with improved xylose utilization capability

  • Bioenergy and biofuels
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Production of ethanol from xylose by recombinant Saccharomyces cerevisiae is suboptimal with slow fermentation rate, compared with that from glucose. In this study, a strain-expressing Scheffersomyces stipitis xylose reductase–xylitol dehydrogenase (XR-XDH) pathway was subjected to adaptive evolution on xylose; this approach generated populations with the significantly improved cell growth and ethanol production rate. Mutants were isolated, and the best one was used for sporulation to generate eight stable mutant strains with improved xylose fermentation ability. They were used in a microarray assay to study the molecular basis of the enhanced phenotype. The enriched transcriptional differences among the eight mutant strains and the native strain revealed novel responses to xylose, which likely contributes to the improved xylose utilization. The upregulated vitamin B1 and B6 biosynthesis indicated that thiamine served as an important cofactor in xylose metabolism and may alleviate the redox stress. The increased expression of genes involved in sulfur amino acid biosynthesis and the decreased expression of genes related to Fe(II) transport may alleviate redox stress as well. Meanwhile, it was remarkable that several glucose-repressible genes, including genes of the galactose metabolism, gluconeogenesis, and ethanol catabolism, had a lower expression level after adaptive evolution. Concomitantly, the expression levels of two regulators of the glucose signaling pathway, Rgs2 and Sip4, decreased, indicating a reshaped signaling pathway to xylose after adaptive evolution. Our findings provide new targets for construction of a superior bioethanol producing strain through inverse metabolic engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Attfield PV, Bell PJ (2006) Use of population genetics to derive nonrecombinant Saccharomyces cerevisiae strains that grow using xylose as a sole carbon source. FEMS Yeast Res 6:862–868

    Article  CAS  PubMed  Google Scholar 

  • Batt CA, Carvallo S, Easson DD, Akedo M, Sinskey AJ (1986) Direct evidence for a xylose metabolic pathway in Saccharomyces cerevisiae. Biotechnol Bioeng 28:549–553

    Article  CAS  PubMed  Google Scholar 

  • Bergdahl B, Sandstrom AG, Borgstrom C, Boonyawan T, van Niel EW, Gorwa-Grauslund MF (2013) Engineering yeast hexokinase 2 for improved tolerance toward xylose-induced inactivation. PLoS One 8:e75055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boer VM, de Winde JH, Pronk JT, Piper MD (2003) The genome-wide transcriptional responses of Saccharomyces cerevisiae grown on glucose in aerobic chemostat cultures limited for carbon, nitrogen, phosphorus, or sulfur. J Biol Chem 278:3265–3274

    Article  CAS  PubMed  Google Scholar 

  • Çakar ZP, Alkım C, Turanlı B, Tokman N, Akman S, Sarıkaya M, Tamerler C, Benbadis L, François JM (2009) Isolation of cobalt hyper-resistant mutants of Saccharomyces cerevisiae by in vivo evolutionary engineering approach. J Biotechnol 143(2):130–138

    Article  PubMed  Google Scholar 

  • Çakar ZP, Turanlı-Yıldız B, Alkım C, Yılmaz Ü (2012) Evolutionary engineering of Saccharomyces cerevisiae for improved industrially important properties. FEMS Yeast Res 12:171–182

    Article  PubMed  Google Scholar 

  • Cardoso LA, Ferreira ST, Hermes-Lima M (2008) Reductive inactivation of yeast glutathione reductase by Fe(II) and NADPH. Comp Biochem Physiol A: Comp Physiol 151:313–321

    Article  Google Scholar 

  • Caro AA, Cederbaum AI (2004) Antioxidant properties of S-adenosyl-l-methionine in Fe2+-initiated oxidations. Free Radic Biol Med 36:1303–1316

    Article  CAS  PubMed  Google Scholar 

  • Chu BC, Lee H (2007) Genetic improvement of Saccharomyces cerevisiae for xylose fermentation. Biotechnol Adv 25:425–441

    Article  CAS  PubMed  Google Scholar 

  • Demeke MM, Dietz H, Li Y, Foulquié-Moreno MR, Mutturi S, Deprez S, Den Abt T, Bonini BM, Liden G, Dumortier F, Verplaetse A, Boles E, Thevelein JM (2013) Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering. Biotechnol Biofuels 6:89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong YX, Sueda S, Nikawa JI, Kondo H (2004) Characterization of the products of the genes SNO1 and SNZ1 involved in pyridoxine synthesis in Saccharomyces cerevisiae. Eur J Biochem 271:745–752

    Article  CAS  PubMed  Google Scholar 

  • Dragosits M, Mattanovich D (2013) Adaptive laboratory evolution—principles and applications for biotechnology. Microb Cell Factories 12:1

    Article  Google Scholar 

  • Drake JW (1991) A constant rate of spontaneous mutation in DNA-based microbes. Proc Natl Acad Sci U S A 88:7160–7164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du J, Yuan Y, Si T, Lian J, Zhao H (2012) Customized optimization of metabolic pathways by combinatorial transcriptional engineering. Nucleic Acids Res 40:e142–e142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elena SF, Lenski RE (2003) Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation. Nat Rev Genet 4:457–469

    Article  CAS  PubMed  Google Scholar 

  • Gancedo JM (1998) Yeast carbon catabolite repression. Microbiol Mol Biol Rev 62:334–361

    CAS  PubMed  PubMed Central  Google Scholar 

  • Greenall A, Lei G, Swan DC, James K, Wang L, Peters H, Wipat A, Wilkinson DJ, Lydall D (2008) A genome wide analysis of the response to uncapped telomeres in budding yeast reveals a novel role for the NAD+ biosynthetic gene BNA2 in chromosome end protection. Genome Biol 9:R146

    Article  PubMed  PubMed Central  Google Scholar 

  • Hohmann S, Meacock PA (1998) Thiamin metabolism and thiamin diphosphate-dependent enzymes in the yeast Saccharomyces cerevisiae: genetic regulation. Biochim Biophys Acta 1385:201–219

    Article  CAS  PubMed  Google Scholar 

  • Jeppsson M, Johansson B, Hahn-Hägerdal B, Gorwa-Grauslund MF (2002) Reduced oxidative pentose phosphate pathway flux in recombinant xylose-utilizing Saccharomyces cerevisiae strains improves the ethanol yield from xylose. Appl Environ Microbiol 68:1604–1609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin YS, Ni H, Laplaza JM, Jeffries TW (2003) Optimal growth and ethanol production from xylose by recombinant Saccharomyces cerevisiae require moderate D-xylulokinase activity. Appl Environ Microbiol 69:495–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin YS, Laplaza JM, Jeffries TW (2004) Saccharomyces cerevisiae engineered for xylose metabolism exhibits a respiratory response. Appl Environ Microbiol 70:6816–6825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kida K, Kume K, Morimura S, Sonoda Y (1992) Repeated-batch fermentation process using a thermotolerant flocculating yeast constructed by protoplast fusion. J Fermentation Bioeng 74:169–173

    Article  CAS  Google Scholar 

  • Kim JM, Vanguri S, Boeke JD, Gabriel A, Voytas DF (1998) Transposable elements and genome organization: a comprehensive survey of retrotransposons revealed by the complete Saccharomyces cerevisiae genome sequence. Genome Res 8:464–478

    CAS  PubMed  Google Scholar 

  • Krahulec S, Klimacek M, Nidetzky B (2012) Analysis and prediction of the physiological effects of altered coenzyme specificity in xylose reductase and xylitol dehydrogenase during xylose fermentation by Saccharomyces cerevisiae. J Biotechnol 158:192–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuttykrishnan S, Sabina J, Langton LL, Johnston M, Brent MR (2010) A quantitative model of glucose signaling in yeast reveals an incoherent feed forward loop leading to a specific, transient pulse of transcription. Proc Natl Acad Sci U S A 107:16743–16748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuyper M, Aaron A, van Dijken JP, Pronk JT (2004) Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle. FEMS Yeast Res 4:655–664

    Article  CAS  PubMed  Google Scholar 

  • Kuyper M, Toirkens MJ, Diderich JA, Winkler AA, van Dijken JP, Pronk JT (2005) Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain. FEMS Yeast Res 5:925–934

    Article  CAS  PubMed  Google Scholar 

  • Latimer LN, Lee ME, Medina-Cleghorn D, Kohnz RA, Nomura DK, Dueber JE (2014) Employing a combinatorial expression approach to characterize xylose utilization in Saccharomyces cerevisiae. Metab Eng 25:20–29

    Article  CAS  PubMed  Google Scholar 

  • Lee SM, Jellison T, Alper HS (2014) Systematic and evolutionary engineering of a xylose isomerase-based pathway in Saccharomyces cerevisiae for efficient conversion yields. Biotechnol Biofuels 7:1

    Article  Google Scholar 

  • Lee SY, Kim HU (2015) Systems strategies for developing industrial microbial strains. Nature Biotechnol 33:1061–1072

    Article  CAS  Google Scholar 

  • Li YC, Mitsumasu K, Gou ZX, Gou M, Tang YQ, Li GY, XL W, Akamatsu T, Taguchi H, Kida K (2015) Xylose fermentation efficiency and inhibitor tolerance of the recombinant industrial Saccharomyces cerevisiae strain NAPX37. Appl Microbiol Biotechnol 100:1531–1542

    Article  PubMed  Google Scholar 

  • Liu E, Hu Y (2010) Construction of a xylose-fermenting Saccharomyces cerevisiae strain by combined approaches of genetic engineering, chemical mutagenesis and evolutionary adaptation. Biochem Eng J 48:204–210

    Article  CAS  Google Scholar 

  • Lu C, Jeffries T (2007) Shuffling of promoters for multiple genes to optimize xylose fermentation in an engineered Saccharomyces cerevisiae strain. Appl Environ Microbiol 73:6072–6077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu SC (2000) S-adenosylmethionine. Int J Biochem Cell Biol 32:391–395

    Article  CAS  PubMed  Google Scholar 

  • Matsushika A, Inoue H, Kodaki T, Sawayama S (2009) Ethanol production from xylose in engineered Saccharomyces cerevisiae strains, current state and perspectives. Appl Microbiol Biotechnol 84(1):37–53

    Article  CAS  PubMed  Google Scholar 

  • Matsushika A, Goshima T, Hoshino T (2014) Transcription analysis of recombinant industrial and laboratory Saccharomyces cerevisiae strains reveals the molecular basis for fermentation of glucose and xylose. Microb Cell Factories 13:459–459

    Article  Google Scholar 

  • Mojzita D, Hohmann S (2006) Pdc2 coordinates expression of the THI regulon in the yeast Saccharomyces cerevisiae. Mol Gen Genomics 276:147–161

    Article  CAS  Google Scholar 

  • Oud B, van Maris AJ, Daran JM, Pronk JT (2012) Genome-wide analytical approaches for reverse metabolic engineering of industrially relevant phenotypes in yeast. FEMS Yeast Res 12:183–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pannunzio NR, Manthey GM, Liddell LC, BX F, Roberts CM, Bailis AM (2012) Rad59 regulates association of Rad52 with DNA double-strand breaks. Microbiology 1:285–297

    Article  CAS  Google Scholar 

  • Patterson MN, Scannapieco AE, PH A, Dorsey S, Royer CA, Maxwell PH (2015) Preferential retrotransposition in aging yeast mother cells is correlated with increased genome instability. DNA Repair 34:18–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng B, Shen Y, Li X, Chen X, Hou J, Bao X (2012) Improvement of xylose fermentation in respiratory-deficient xylose-fermenting Saccharomyces cerevisiae. Metab Eng 14:9–18

    Article  CAS  PubMed  Google Scholar 

  • Pittet M, Conzelmann A (2007) Biosynthesis and function of GPI proteins in the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1771:405–420

    Article  CAS  PubMed  Google Scholar 

  • Pollak N, Dölle C, Ziegler M (2007) The power to reduce: pyridine nucleotides--small molecules with a multitude of functions. Biochem J 402:205–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rapala-Kozik M, Kowalska E, Ostrowska K (2008) Modulation of thiamine metabolism in Zea mays seedlings. J Exp Bot 59:4133–4143

    Article  CAS  PubMed  Google Scholar 

  • Rapala-Kozik M, Wolak N, Kujda M, Banas AK (2012) The upregulation of thiamine (vitamin B 1) biosynthesis in Arabidopsis thaliana seedlings under salt and osmotic stress conditions is mediated by abscisic acid at the early stages of this stress response. BMC Plant Biol 12:1

    Article  Google Scholar 

  • Regenberg B, Regenberg B, Grotkjær T, Winther O, Fausbøll A, Åkesson M, Bro C, Hansen LK, Brunak S, Nielsen J (2006) Growth-rate regulated genes have profound impact on interpretation of transcriptome profiling in Saccharomyces cerevisiae. Genome Biol 7:R107

    Article  PubMed  PubMed Central  Google Scholar 

  • Robberecht C, Voet T, Esteki MZ, Nowakowska BA, Vermeesch JR (2012) Nonallelic homologous recombination between retrotransposable elements is a driver of de novo unbalanced translocations. Genome Res 23:411–418

    Article  PubMed  Google Scholar 

  • Rodriguez-Navarro S, Llorente B, Rodriguez-Manzaneque MT, Ramne A, Uber G, Marchesan D, Dujon B, Herrero E, Sunnerhagen P, Perez-Ortin JE (2002) Functional analysis of yeast gene families involved in metabolism of vitamins B1 and B6. Yeast 19:1261–1276

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez A, Herrero P, Moreno F (2001) The hexokinase 2 protein regulates the expression of the GLK1, HXK1 and HXK2 genes of Saccharomyces cerevisiae. Biochem J 355:625–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Runquist D, Hahn-Hägerdal B, Bettiga M (2009) Increased expression of the oxidative pentose phosphate pathway and gluconeogenesis in anaerobically growing xylose-utilizing Saccharomyces cerevisiae. Microb Cell Factories 8:49

    Article  Google Scholar 

  • Salusjärvi L, Kankainen M, Soliymani R, Pitkänen JP, Penttilä M, Ruohonen L (2008) Regulation of xylose metabolism in recombinant Saccharomyces cerevisiae. Microb Cell Factories 7:18

    Article  Google Scholar 

  • Shen Y, Chen X, Peng B, Chen L, Jin H, Bao X (2012) An efficient xylose-fermenting recombinant Saccharomyces cerevisiae strain obtained through adaptive evolution and its global transcription profile. Appl Microbiol Biotechnol 96:1079–1091

    Article  CAS  PubMed  Google Scholar 

  • Shen Y, Hou J, Bao X (2013) Enhanced xylose fermentation capacity related to an altered glucose sensing and repression network in a recombinant Saccharomyces cerevisiae. Bioengineered 4:435–437

    Article  PubMed  PubMed Central  Google Scholar 

  • Sims RE, Mabee W, Saddler JN, Taylor M (2010) An overview of second generation biofuel technologies. Bioresour Technol 101:1570–1580

    Article  CAS  PubMed  Google Scholar 

  • Sonderegger M, Sauer U (2003) Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose. Appl Environ Microbiol 69:1990–1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taddei F, Radman M, Maynard-Smith J, Toupance B, Gouyon P, Godelle B (1997) Role of mutator alleles in adaptive evolution. Nature 387:700–702

    Article  CAS  PubMed  Google Scholar 

  • Tang Y, An M, Liu K, Nagai S, Shigematsu T, Morimura S, Kida K (2006) Ethanol production from acid hydrolysate of wood biomass using the flocculating yeast Saccharomyces cerevisiae strain KF-7. Proc Biochem 41:909–914

    Article  CAS  Google Scholar 

  • Tanghe A, Prior B, Thevelein JM (2006) Yeast responses to stresses. In: Rosa CA, Peter G (eds) Biodiversity and ecophysiology of yeasts. Springer-Verlag, Berlin, pp 175–195

  • Thomas D, SurdinKerjan Y (1997) Metabolism of sulfur amino acids in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 61:503–532

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wahlbom CF, Cordero Otero RR, van Zyl WH, Hahn-Hägerdal B, Jonsson LJ (2003) Molecular analysis of a Saccharomyces cerevisiae mutant with improved ability to utilize xylose shows enhanced expression of proteins involved in transport, initial xylose metabolism, and the pentose phosphate pathway. Appl Environ Microbiol 69:740–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe S, Abu Saleh A, Pack SP, Annaluru N, Kodaki T, Makino K (2007) Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein-engineered NADH-preferring xylose reductase from Pichia stipitis. Microbiology 153:3044–3054

    Article  CAS  PubMed  Google Scholar 

  • Wolak N, Kowalska E, Kozik A, Rapala-Kozik M (2014) Thiamine increases the resistance of baker's yeast Saccharomyces cerevisiae against oxidative, osmotic and thermal stress, through mechanisms partly independent of thiamine diphosphate-bound enzymes. FEMS Yeast Res 14:1249–1262

    Article  CAS  PubMed  Google Scholar 

  • Yun CW (2000) Siderophore-iron uptake in Saccharomyces cerevisiae. J Biol Chem 275:16354–16359

    Article  CAS  PubMed  Google Scholar 

  • Zaman S, Lippman SI, Zhao X, Broach JR (2008) How Saccharomyces responds to nutrients. Annu Rev Genet 42:27–81

    Article  CAS  PubMed  Google Scholar 

  • Zeng WY, Tang YQ, Gou M, Xia ZY, Kida K (2016) Transcriptomes of a xylose-utilizing industrial flocculating Saccharomyces cerevisiae strain cultured in media containing different sugar sources. AMB Express 6:51

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31170093).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue-Qin Tang.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 918 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, WY., Tang, YQ., Gou, M. et al. Comparative transcriptomes reveal novel evolutionary strategies adopted by Saccharomyces cerevisiae with improved xylose utilization capability. Appl Microbiol Biotechnol 101, 1753–1767 (2017). https://doi.org/10.1007/s00253-016-8046-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-8046-y

Keywords

Navigation