Skip to main content
Log in

Pdc2 coordinates expression of the THI regulon in the yeast Saccharomyces cerevisiae

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Coordination of gene expression in response to different metabolic signals is crucial for cellular homeostasis. In this work, we addressed the role of Pdc2 in the coordinated control of biosynthesis and demand of an essential metabolic cofactor, thiaminediphosphate (ThDP). The DNA binding protein Pdc2 was initially identified as a regulator of the genes PDC1 and PDC5, which encode isoforms of the glycolytic enzyme pyruvate decarboxylase (Pdc). The Pdc2 has also been implicated as a regulator of genes encoding enzymes in ThDP metabolism. The ThDP is the cofactor of Pdc. Using global and gene-specific expression analysis, we show that Pdc2 is required for the upregulation of all genes controlled by thiamine availability. The Pdc2 seems to act together with Thi2, a known transcriptional regulator of THI genes. The requirement for these two factors differs in a gene-specific manner. While the Thi2, in conjunction with Thi3, seems to control expression of THI genes with respect to thiamine availability, the Pdc2 may link the ThDP demand to carbon source availability. Interestingly, the enzymes Pdc1 and Pdc5 are enriched in the nucleus. Both are known to affect gene expression in an autoregulatory mechanism and expression of both is regulated by glucose and Pdc2, further pointing to a role of Pdc2 in coordinating different metabolic signals. Our analysis helps to further define the THI regulon and hence the spectrum of genes/proteins involved in the ThDP homeostasis. In particular, we identify novel proteins putatively involved in thiamine and/or ThDP transport across the plasma and the mitochondrial membrane. In conclusion, the THI regulon is the most interesting system to study principles of genes expression and metabolic coordination and deserves further attention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahuatzi D, Herrero P, de la Cera T, Moreno F (2004) The glucose-regulated nuclear localization of hexokinase 2 in Saccharomyces cerevisiae is Mig1-dependent. J Biol Chem 279:14440–14446

    Article  PubMed  CAS  Google Scholar 

  • Begley TP (1996) The biosynthesis and degradation of thiamin (vitamin B1). Nat Prod Rep 13:177–185

    Article  PubMed  CAS  Google Scholar 

  • Burrows RJ, Byrne KL, Meacock PA (2000) Isolation and characterization of Saccharomyces cerevisiae mutants with derepressed thiamine gene expression. Yeast 16:1497–1508

    Article  PubMed  CAS  Google Scholar 

  • Candy JM, Duggleby RG (1998) Structure and properties of pyruvate decarboxylase and site-directed mutagenesis of the Zymomonas mobilis enzyme. Biochim Biophys Acta 1385:323–338

    PubMed  CAS  Google Scholar 

  • Dickinson JR, Lanterman MM, Danner DJ, Pearson BM, Sanz P, Harrison SJ, Hewlins MJ (1997) A 13C nuclear magnetic resonance investigation of the metabolism of leucine to isoamyl alcohol in Saccharomyces cerevisiae. J Biol Chem 272:26871–26878

    Article  PubMed  CAS  Google Scholar 

  • Eberhardt I, Cederberg H, Li H, Konig S, Jordan F, Hohmann S (1999) Autoregulation of yeast pyruvate decarboxylase gene expression requires the enzyme but not its catalytic activity. Eur J Biochem 262:191–201

    Article  PubMed  CAS  Google Scholar 

  • Enjo F, Nosaka K, Ogata M, Iwashima A, Nishimura H (1997) Isolation and characterization of a thiamin transport gene, THI10, from Saccharomyces cerevisiae. J Biol Chem 272:19165–19170

    Article  PubMed  CAS  Google Scholar 

  • Fauchon M, Lagniel G, Aude JC, Lombardia L, Soularue P, Petat C, Marguerie G, Sentenac A, Werner M, Labarre J (2002) Sulfur sparing in the yeast proteome in response to sulfur demand. Mol Cell 9:713–723

    Article  PubMed  CAS  Google Scholar 

  • Flikweert MT, Kuyper M, van Maris AJ, Kotter P, van Dijken JP, Pronk JT (1999) Steady-state and transient-state analysis of growth and metabolite production in a Saccharomyces cerevisiae strain with reduced pyruvate-decarboxylase activity. Biotechnol Bioeng 66:42–50

    Article  PubMed  CAS  Google Scholar 

  • Gancedo JM (1998) Yeast carbon catabolite repression. Microbiol Mol Biol Rev 62:334–361

    PubMed  CAS  Google Scholar 

  • Gietz RD, Sugino A (1988) New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74:527–534

    Article  PubMed  CAS  Google Scholar 

  • Gueldener U, Heinisch J, Koehler GJ, Voss D, Hegemann JH (2002) A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. Nucleic Acids Res 30:e23

    Article  PubMed  CAS  Google Scholar 

  • Hall DA, Zhu H, Zhu X, Royce T, Gerstein M, Snyder M (2004) Regulation of gene expression by a metabolic enzyme. Science 306:482–484

    Article  PubMed  CAS  Google Scholar 

  • Hohmann S (1991a) Characterization of PDC6, a third structural gene for pyruvate decarboxylase in Saccharomyces cerevisiae. J Bacteriol 173:7963–7969

    CAS  Google Scholar 

  • Hohmann S (1991b) PDC6, a weakly expressed pyruvate decarboxylase gene from yeast, is activated when fused spontaneously under the control of the PDC1 promoter. Curr Genet 20:373–378

    Article  CAS  Google Scholar 

  • Hohmann S (1993) Characterisation of PDC2, a gene necessary for high level expression of pyruvate decarboxylase structural genes in Saccharomyces cerevisiae. Mol Gen Genet 241:657–666

    Article  PubMed  CAS  Google Scholar 

  • Hohmann S, Cederberg H (1990) Autoregulation may control the expression of yeast pyruvate decarboxylase structural genes PDC1 and PDC5. Eur J Biochem 188:615–621

    Article  PubMed  CAS  Google Scholar 

  • Hohmann S, Meacock PA (1998) Thiamin metabolism and thiamin diphosphate-dependent enzymes in the yeast Saccharomyces cerevisiae: genetic regulation. Biochim Biophys Acta 1385:201–219

    PubMed  CAS  Google Scholar 

  • Huh WK, Falvo JV, Gerke LC, Carroll AS, Howson RW, Weissman JS, O’Shea EK (2003) Global analysis of protein localization in budding yeast. Nature 425:686–691

    Article  PubMed  CAS  Google Scholar 

  • Kaiser B, Munder T, Saluz HP, Kunkel W, Eck R (1999) Identification of a gene encoding the pyruvate decarboxylase gene regulator CaPdc2p from Candida albicans. Yeast 15:585–591

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki Y, Onozuka M, Mizote T, Nosaka K (2005) Biosynthesis of hydroxymethylpyrimidine pyrophosphate in Saccharomyces cerevisiae. Curr Genet 47:156–162

    Article  PubMed  CAS  Google Scholar 

  • Llorente B, Dujon B (2000) Transcriptional regulation of the Saccharomyces cerevisiae DAL5 gene family and identification of the high affinity nicotinic acid permease TNA1 (YGR260w). FEBS Lett 475:237–241

    Article  PubMed  CAS  Google Scholar 

  • Llorente B, Fairhead C, Dujon B (1999) Genetic redundancy and gene fusion in the genome of the Baker’s yeast Saccharomyces cerevisiae: functional characterization of a three-member gene family involved in the thiamine biosynthetic pathway. Mol Microbiol 32:1140–1152

    Article  PubMed  CAS  Google Scholar 

  • Lu YM, Lin YR, Tsai A, Hsao YS, Li CC, Cheng MY (2003) Dissecting the pet18 mutation in Saccharomyces cerevisiae: HTL1 encodes a 7-kDa polypeptide that interacts with components of the RSC complex. Mol Genet Genomics 269:321–330

    Article  PubMed  CAS  Google Scholar 

  • Marobbio CM, Vozza A, Harding M, Bisaccia F, Palmieri F, Walker JE (2002) Identification and reconstitution of the yeast mitochondrial transporter for thiamine pyrophosphate. EMBO J 21:5653–5661

    Article  PubMed  CAS  Google Scholar 

  • Muller EH, Richards EJ, Norbeck J, Byrne KL, Karlsson KA, Pretorius GH, Meacock PA, Blomberg A, Hohmann S (1999) Thiamine repression and pyruvate decarboxylase autoregulation independently control the expression of the Saccharomyces cerevisiae PDC5 gene. FEBS Lett 449:245–250

    Article  PubMed  CAS  Google Scholar 

  • Mumberg D, Muller R, Funk M (1994) Regulatable promoters of Saccharomyces cerevisiae: comparison of transcriptional activity and their use for heterologous expression. Nucleic Acids Res 22:5767–5768

    Article  PubMed  CAS  Google Scholar 

  • Nishimura H, Kawasaki Y, Nosaka K, Kaneko Y, Iwashima A (1991) A constitutive thiamine metabolism mutation, thi80, causing reduced thiamine pyrophosphokinase activity in Saccharomyces cerevisiae. J Bacteriol 173:2716–2719

    PubMed  CAS  Google Scholar 

  • Nishimura H, Kawasaki Y, Kaneko Y, Nosaka K, Iwashima A (1992a) Cloning and characteristics of a positive regulatory gene, THI2 (PHO6), of thiamin biosynthesis in Saccharomyces cerevisiae. FEBS Lett 297:155–158

    Article  CAS  Google Scholar 

  • Nishimura H, Kawasaki Y, Kaneko Y, Nosaka K, Iwashima A (1992b) A positive regulatory gene, THI3, is required for thiamine metabolism in Saccharomyces cerevisiae. J Bacteriol 174:4701–4706

    CAS  Google Scholar 

  • Nosaka K, Nishimura H, Iwashima A (1989) Identity of soluble thiamine-binding protein with thiamine repressible acid phosphatase in Saccharomyces cerevisiae. Yeast 5(Spec No):S447–S451

    Google Scholar 

  • Nosaka K, Kaneko Y, Nishimura H, Iwashima A (1993) Isolation and characterization of a thiamin pyrophosphokinase gene, THI80, from Saccharomyces cerevisiae. J Biol Chem 268:17440–17447

    PubMed  CAS  Google Scholar 

  • Nosaka K, Nishimura H, Kawasaki Y, Tsujihara T, Iwashima A (1994) Isolation and characterization of the THI6 gene encoding a bifunctional thiamin-phosphate pyrophosphorylase/hydroxyethylthiazole kinase from Saccharomyces cerevisiae. J Biol Chem 269:30510–30516

    PubMed  CAS  Google Scholar 

  • Nosaka K, Onozuka M, Konno H, Kawasaki Y, Nishimura H, Sano M, Akaji K (2005) Genetic regulation mediated by thiamin pyrophosphate-binding motif in Saccharomyces cerevisiae. Mol Microbiol 58:467–479

    Article  PubMed  CAS  Google Scholar 

  • Praekelt UM, Byrne KL, Meacock PA (1994) Regulation of THI4 (MOL1), a thiamine-biosynthetic gene of Saccharomyces cerevisiae. Yeast 10:481–490

    Article  PubMed  CAS  Google Scholar 

  • Prior C, Tizzani L, Fukuhara H, Wesolowski-Louvel M (1996) RAG3 gene and transcriptional regulation of the pyruvate decarboxylase gene in Kluyveromyces lactis. Mol Microbiol 20:765–772

    Article  PubMed  CAS  Google Scholar 

  • Rep M, Krantz M, Thevelein JM, Hohmann S (2000) The transcriptional response of Saccharomyces cerevisiae to osmotic shock. Hot1p and Msn2p/Msn4p are required for the induction of subsets of high osmolarity glycerol pathway-dependent genes. J Biol Chem 275:8290–8300

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Navarro S, Llorente B, Rodriguez-Manzaneque MT, Ramne A, Uber G, Marchesan D, Dujon B, Herrero E, Sunnerhagen P, Perez-Ortin JE (2002) Functional analysis of yeast gene families involved in metabolism of vitamins B1 and B6. Yeast 19:1261–1276

    Article  PubMed  CAS  Google Scholar 

  • Schmitt HD, Zimmermann FK (1982) Genetic analysis of the pyruvate decarboxylase reaction in yeast glycolysis. J Bacteriol 151:1146–1152

    PubMed  CAS  Google Scholar 

  • Schmitt HD, Ciriacy M, Zimmermann FK (1983) The synthesis of yeast pyruvate decarboxylase is regulated by large variations in the messenger RNA level. Mol Gen Genet 192:247–252

    Article  PubMed  CAS  Google Scholar 

  • Singleton CK (1997) Identification and characterization of the thiamine transporter gene of Saccharomyces cerevisiae. Gene 199:111–121

    Article  PubMed  CAS  Google Scholar 

  • Tizzani L, Meacock P, Frontali L, Wesolowski-Louvel M (1998) The RAG3 gene of Kluyveromyces lactis is involved in the transcriptional regulation of genes coding for enzymes implicated in pyruvate utilization and genes of the biosynthesis of thiamine pyrophosphate. FEMS Microbiol Lett 168:25–30

    Article  PubMed  CAS  Google Scholar 

  • Tong AH, Evangelista M, Parsons AB, Xu H, Bader GD, Page N, Robinson M, Raghibizadeh S, Hogue CW, Bussey H, Andrews B, Tyers M, Boone C (2001) Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294:2364–2368

    Article  PubMed  CAS  Google Scholar 

  • White RL, Spenser ID (1979) Thiamin biosynthesis in Saccharomyces cerevisiae. Origin of carbon-2 of the thiazole moiety. Biochem J 179:315–325

    PubMed  CAS  Google Scholar 

  • Wightman R, Meacock PA (2003) The THI5 gene family of Saccharomyces cerevisiae: distribution of homologues among the hemiascomycetes and functional redundancy in the aerobic biosynthesis of thiamin from pyridoxine. Microbiology 149:1447–1460

    Article  PubMed  CAS  Google Scholar 

  • Winzeler EA, Shoemaker DD, Astromoff A, Liang H, Anderson K, Andre B, Bangham R, Benito R, Boeke JD, Bussey H, Chu AM, Connelly C, Davis K, Dietrich F, Dow SW, El Bakkoury M, Foury F, Friend SH, Gentalen E, Giaever G, Hegemann JH, Jones T, Laub M, Liao H, Liebundguth N, Lockhart DJ, Lucau-Danila A, Lussier M, M’Rabet N, Menard P, Mittmann M, Pai C, Rebischung C, Revuelta JL, Riles L, Roberts CJ, Ross-MacDonald P, Scherens B, Snyder M, Sookhai-Mahadeo S, Storms RK, Veronneau S, Voet M, Volckaert G, Ward TR, Wysocki R, Yen GS, Yu K, Zimmermann K, Philippsen P, Johnston M, Davis RW (1999) Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285:901–906

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

We thank Peter Dahl for yeast strain constructions. This work was supported by grants from the Swedish Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Hohmann.

Additional information

Communicated by A. Aguilera

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mojzita, D., Hohmann, S. Pdc2 coordinates expression of the THI regulon in the yeast Saccharomyces cerevisiae . Mol Genet Genomics 276, 147–161 (2006). https://doi.org/10.1007/s00438-006-0130-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-006-0130-z

Keywords

Navigation