Skip to main content

Advertisement

Log in

Bacterial glucans: production, properties, and applications

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Bacterial glucans have aroused increasing interest in commercial applications in the food and pharmaceutical sectors. A number of bacterial glucans have been reported over recent decades, and their structure, production, and functional properties have been extensively studied. In this paper, we review recent researches on bacterial glucans, with emphasis on the production, physical and chemical properties, and the new developments in food, biomedical, pharmaceutical, and other industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adeyeye A, Jansson P-E, Lindberg B, Henrichsen J (1988) Structural studies of the capsular polysaccharide from Streptococcus pneumoniae type 37. Carbohydr Res 180(2):295–299. doi:10.1016/0008-6215(88)80086-7

    Article  CAS  Google Scholar 

  • Alban S, Franz G (2001) Partial synthetic glucan sulfates as potential new antithrombotics: a review. Biomacromolecules 2(2):354–361. doi:10.1021/bm010032u

    Article  CAS  PubMed  Google Scholar 

  • Altabe SG, Talaga P, Wieruszeski J-M, Lippens G, Ugalde R, Bohin J-P (1998) Periplasmic glucans of Azospirillum brasilense. In: Elmerich C, Kondorosi A, Newton WE (eds) Biological nitrogen fixation for the 21st century. Kluwer, Dordrecht, p. 390

  • Anonymous (1996a) 21 CFR 172. Food additive permitted for direct addition to food for human consumption: curdlan. Fed Regist 61:65941–65942

    Google Scholar 

  • Anonymous (1996b) Bioproducts: bio-concrete. Bio Industry 13:56–57

    Google Scholar 

  • Anonymous (2000) WHO food additives series. In: WHO (ed) 53rd Meeting of the joint FAO/WHO expert committee on food additives. JEFCA/WHO, Geneva

    Google Scholar 

  • Arrecubieta C, López R, Garcia E (1996) Type 3-specific synthase of Streptococcus pneumoniae (Cap3B) directs type 3 polysaccharide biosynthesis in Escherichia coli and in pneumococcal strains of different serotypes. J Exp Med 184(2):449–455. doi:10.1084/jem.184.2.449

    Article  CAS  PubMed  Google Scholar 

  • Årsköld E, Svensson M, Grage H, Roos S, Rådström P, van Niel EW (2007) Environmental influences on exopolysaccharide formation in Lactobacillus reuteri ATCC 55730. Int J Food Microbiol 116(1):159–167. doi:10.1016/j.ijfoodmicro.2006.12.010

    Article  PubMed  CAS  Google Scholar 

  • Bäckdahl H, Helenius G, Bodin A, Nannmark U, Johansson BR, Risberg B, Gatenholm P (2006) Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomater 27(9):2141–2149. doi:10.1016/j.biomaterials.2005.10.026

    Article  CAS  Google Scholar 

  • Basta AH, El-Saied H (2009) Performance of improved bacterial cellulose application in the production of functional paper. J Appl Microbiol 107(6):2098–2107. doi:10.1111/j.1365-2672.2009.04467.x

    Article  CAS  PubMed  Google Scholar 

  • Berensmeier S, Ergezinger M, Bohnet M, Buchholz K (2004) Design of immobilised dextransucrase for fluidised bed application. J Biotechnol 114(3):255–267. doi:10.1016/j.jbiotec.2004.04.009

    Article  CAS  PubMed  Google Scholar 

  • Bhagwat AA, Mithöfer A, Pfeffer PE, Kraus C, Spickers N, Hotchkiss A, Ebel J, Keister DL (1999) Further studies of the role of cyclic β-glucans in symbiosis. An ndvC mutant of Bradyrhizobium japonicum synthesizes cyclodecakis-(1→3)-β-glucosyl. Plant Physiol 119(3):1057–1064. doi:10.1104/pp.119.3.1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biedendieck R, Beine R, Gamer M, Jordan E, Buchholz K, Seibel J, Dijkhuizen L, Malten M, Jahn D (2007) Export, purification, and activities of affinity tagged Lactobacillus reuteri levansucrase produced by Bacillus megaterium. Appl Microbiol Biotechnol 74(5):1062–1073. doi:10.1007/s00253-006-0756-0

    Article  CAS  PubMed  Google Scholar 

  • Brison Y, Pijning T, Malbert Y, Fabre É, Mourey L, Morel S, Potocki-Véronèse G, Monsan P, Tranier S, Remaud-Siméon M, Dijkstra BW (2012) Functional and structural characterization of α-(1->2) branching sucrase derived from DSR-E glucansucrase. J Biol Chem 287(11):7915–7924. doi:10.1074/jbc.M111.305078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buckeridge MS, Rayon C, Urbanowicz B, Tiné MAS, Carpita NC (2004) Mixed linkage (1→3),(1→4)-β-D-glucans of grasses. Cereal Chem 81(1):115–127. doi:10.1094/CCHEM.2004.81.1.115

    Article  CAS  Google Scholar 

  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The carbohydrate-active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37(suppl 1):D233–D238. doi:10.1093/nar/gkn663

    Article  CAS  PubMed  Google Scholar 

  • Carreira P, Mendes JA, Trovatti E, Serafim LS, Freire CS, Silvestre AJ, Neto CP (2011) Utilization of residues from agro-forest industries in the production of high value bacterial cellulose. Bioresource Technol 102(15):7354–7360. doi:10.1016/j.biortech.2011.04.081

    Article  CAS  Google Scholar 

  • Castro C, Zuluaga R, Putaux J-L, Caro G, Mondragon I, Ganán P (2011) Structural characterization of bacterial cellulose produced by Gluconacetobacter swingsii sp. from Colombian agroindustrial wastes. Carbohydr Polym 84(1):96–102. doi:10.1016/j.carbpol.2010.10.072

    Article  CAS  Google Scholar 

  • Chang Z-Q, Lee J-S, Hwang M-H, Hong J-H, Jung H-K, Lee S-P, Park S-C (2009) A novel β-glucan produced by Paenibacillus polymyxa JB115 induces nitric oxide production in RAW264. 7 macrophages. J Vet Sci 10(2):165–167. doi:10.4142/jvs.2009.10.2.165

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang Z-Q, Lee J-S, Gebru E, Hong J-H, Jung H-K, Jo W-S, Park S-C (2010) Mechanism of macrophage activation induced by β-glucan produced from Paenibacillus polymyxa JB115. Biochem Biophys Res Commun 391(3):1358–1362. doi:10.1016/j.bbrc.2009.12.064

    Article  CAS  PubMed  Google Scholar 

  • Chang Z-Q, Reza MA, Lee J-S, Gebru E, Jang S-H, Choi M-J, Lee S-J, Damte D, Kim J-C, Park S-C (2011) Immunomodulatory activities and subacute toxicity of a novel β-glucan from Paenibacillus polymyxa JB115 in rats. Immunopharmacol Immunotoxicol 33(1):124–134. doi:10.3109/08923973.2010.487069

    Article  CAS  PubMed  Google Scholar 

  • Chang S-T, Chen L-C, Lin S-B, Chen H-H (2012) Nano-biomaterials application: morphology and physical properties of bacterial cellulose/gelatin composites via crosslinking. Food Hydrocoll 27(1):137–144. doi:10.1016/j.foodhyd.2011.08.004

    Article  CAS  Google Scholar 

  • Chawla PR, Bajaj IB, Survase SA, Singhal RS (2009) Microbial cellulose: fermentative production and applications. Food Technol Biotechnol 47(2):107–124

    CAS  Google Scholar 

  • Chen R, Bhagwat AA, Yaklich R, Keister DL (2002) Characterization of ndvD, the third gene involved in the synthesis of cyclic β-(1→3),(1→6)-D-glucans in Bradyrhizobium japonicum. Can J Microbiol 48(11):1008–1016. doi:10.1139/W02-099

    Article  CAS  PubMed  Google Scholar 

  • Chen P, Wang Z, Zeng L, Yang X, Wang S, Dong W, Jia A, Cai C, Zhang J (2011) A novel soluble β-glucan salecan protects against acute alcohol-induced hepatotoxicity in mice. Biosci Biotechnol Biochem 75(10):1990–1993. doi:10.1271/bbb.110412

    Article  CAS  PubMed  Google Scholar 

  • Chen P, Wang Z, Zeng L, Wang S, Dong W, Jia A, Cai C, Zhang J (2012) Protective effects of salecan against carbon tetrachloride-induced acute liver injury in mice. J Appl Toxicol 32(10):796–803. doi:10.1002/jat.1694

    Article  CAS  PubMed  Google Scholar 

  • Chen XY, Woodward A, Zijlstra RT, Gänzle MG (2014a) Exopolysaccharides synthesized by Lactobacillus reuteri protect against enterotoxigenic Escherichia coli in piglets. Appl Environ Microbiol 80(18):5752–5760. doi:10.1128/AEM.01782-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen Y-m, Xu H-y, Wang Y, J-f Z, Wang S-m (2014b) Vitreoscilla hemoglobin promotes Salecan production by Agrobacterium sp. ZX09. J Zhejiang Univ Sci B 15(11):979–985. doi:10.1631/jzus.B1400123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Xu H, Zhou M, Wang Y, Wang S, Zhang J (2015) Salecan enhances the activities of β-1,3-glucanase and decreases the biomass of soil-borne fungi. PLoS One 10(8):e0134799. doi:10.1371/journal.pone.0134799

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cheng HP, Wang PM, Chen JW, Wu WT (2002) Cultivation of Acetobacter xylinum for bacterial cellulose production in a modified airlift reactor. Biotechnol Appl Biochem 35(2):125–132. doi:10.1111/j.1470-8744.2002.tb01180.x

    Article  CAS  PubMed  Google Scholar 

  • Cheng K-C, Catchmark JM, Demirci A (2011) Effects of CMC addition on bacterial cellulose production in a biofilm reactor and its paper sheets analysis. Biomacromol 12(3):730–736. doi:10.1021/bm101363t

    Article  CAS  Google Scholar 

  • Ciocchini AE, Guidolin LS, Casabuono AC, Couto AS, de Iannino NI, Ugalde RA (2007) A glycosyltransferase with a length-controlling activity as a mechanism to regulate the size of polysaccharides. P Natl Acad Sci USA 104(42):16492–16497. doi:10.1073/pnas.0708025104

    Article  CAS  Google Scholar 

  • Côté GL (2009) Acceptor products of alternansucrase with gentiobiose production of novel oligosaccharides for food and feed and elimination of bitterness. Carbohydr Res 344:187–190. doi:10.1016/j.carres.2008.10.017

    Article  PubMed  CAS  Google Scholar 

  • Das D, Baruah R, Goyal A (2014) A food additive with prebiotic properties of an α-D-glucan from Lactobacillus plantarum DM5. Int J Biol Macromol 69:20–26. doi:10.1016/j.ijbiomac.2014.05.029

    Article  CAS  PubMed  Google Scholar 

  • El-Sayed MH, Arafat HH, Elsehemy IA, Basha M (2016) Optimization, purification and physicochemical characterization of curdlan produced by Paenibacillus sp. strain NBR-10. Biosci Biotechnol Res. Asia 13(2). doi:10.13005/bbra/2113

  • Erhardt FA, Rosenstock P, Hellmuth H, Jördening H-J (2010) Development of a multiphase reaction system for integrated synthesis of isomaltose with a new glucosyltransferase variant. Biocatal Biotransform 28(1):72–82. doi:10.3109/10242420903474866

    Article  CAS  Google Scholar 

  • Evans S, Morrison D, Kaneko Y, Havlik I (1998) The effect of curdlan sulphate on development in vitro of Plasmodium falciparum. T Roy Soc Trop Med H 92(1):87–89. doi:10.1016/S0035-9203(98)90969-5

    Article  CAS  Google Scholar 

  • Falconer DJ, Mukerjea R, Robyt JF (2011) Biosynthesis of dextrans with different molecular weights by selecting the concentration of Leuconostoc mesenteroides B-512FMC dextransucrase, the sucrose concentration, and the temperature. Carbohydr Res 346(2):280–284. doi:10.1016/j.carres.2010.10.024

    Article  CAS  PubMed  Google Scholar 

  • Fialho AM, Moreira LM, Granja AT, Popescu AO, Hoffmann K, Sá-Correia I (2008) Occurrence, production, and applications of gellan: current state and perspectives. Appl Microbiol Biotechnol 79(6):889–900. doi:10.1007/s00253-008-1496-0

    Article  CAS  PubMed  Google Scholar 

  • Finkenstadt VL, Côté GL, Willett J (2011) Corrosion protection of low-carbon steel using exopolysaccharide coatings from Leuconostoc mesenteroides. Biotechnol Lett 33(6):1093–1100. doi:10.1007/s10529-011-0539-2

    Article  CAS  PubMed  Google Scholar 

  • Fontana JD, Franco VC, De Souza SJ, Lyra IN, De Souza AM (1991) Nature of plant stimulators in the production of Acetobacter xylinum (“tea fungus”) biofilm used in skin therapy. Appl Biochem Biotechnol 28(1):341–351. doi:10.1007/BF02922613

    Article  PubMed  Google Scholar 

  • Freitas F, Alves VD, Pais J, Costa N, Oliveira C, Mafra L, Hilliou L, Oliveira R, Reis MAM (2009) Characterization of an extracellular polysaccharide produced by a Pseudomonas strain grown on glycerol. Bioresource Technol 100(2):859–865. doi:10.1016/j.biortech.2008.07.002

    Article  CAS  Google Scholar 

  • Freitas F, Alves VD, Reis MA (2011a) Advances in bacterial exopolysaccharides: from production to biotechnological applications. Trends Biotechnol 29(8):388–398. doi:10.1016/j.tibtech.2011.03.008

    Article  CAS  PubMed  Google Scholar 

  • Freitas F, Alves VD, Torres CAV, Cruz M, Sousa I, Melo MJ, Ramos AM, Reis MAM (2011b) Fucose-containing exopolysaccharide produced by the newly isolated Enterobacter strain A47 DSM 23139. Carbohydr Polym 83(1):159–165. doi:10.1016/j.carbpol.2010.07.034

    Article  CAS  Google Scholar 

  • Fu L, Zhang J, Yang G (2013) Present status and applications of bacterial cellulose-based materials for skin tissue repair. Carbohydr Polym 92(2):1432–1442. doi:10.1016/j.carbpol.2012.10.071

    Article  CAS  PubMed  Google Scholar 

  • Funami T, Nishinari K (2007) Gelling characteristics of curdlan aqueous dispersions in the presence of salts. Food Hydrocoll 21(1):59–65. doi:10.1016/j.foodhyd.2006.01.009

    Article  CAS  Google Scholar 

  • Galle S, Schwab C, Arendt E, Gänzle M (2010) Exopolysaccharide-forming Weissella strains as starter cultures for sorghum and wheat sourdoughs. J Agric Food Chem 58(9):5834–5841. doi:10.1021/jf1002683

    Article  CAS  PubMed  Google Scholar 

  • Galle S, Schwab C, Dal Bello F, Coffey A, Gänzle MG, Arendt EK (2012) Influence of in-situ synthesized exopolysaccharides on the quality of gluten-free sorghum sourdough bread. Int J Food Microbiol 155(3):105–112. doi:10.1016/j.ijfoodmicro.2012.01.009

    Article  CAS  PubMed  Google Scholar 

  • Gómez de Segura A, Alcalde M, Yates M, Rojas-Cervantes ML, López-Cortés N, Ballesteros A, Plou FJ (2004) Immobilization of dextransucrase from Leuconostoc mesenteroides NRRL B-512F on Eupergit C supports. Biotechnol Prog 20(5):1414–1420. doi:10.1021/bp0400083

    Article  PubMed  CAS  Google Scholar 

  • Harada T (1979) Electron microscopic study on the ultrastructure of curdlan gel: assembly and dissociation of fibrils by heating. J Electron Microsc 28(3):147–153

    CAS  Google Scholar 

  • Helenius G, Bäckdahl H, Bodin A, Nannmark U, Gatenholm P, Risberg B (2006) In vivo biocompatibility of bacterial cellulose. J Biomed Mater Res A 76(2):431–438. doi:10.1002/jbm.a.30570

    Article  PubMed  CAS  Google Scholar 

  • Hong J-H, Jung HK (2014) Antioxidant and antitumor activities of β-glucan-rich exopolysaccharides with different molecular weight from Paenibacillus polymyxa JB115. J Korean Soc Appl Biol Chem 57(1):105–112. doi:10.1007/s13765-013-4252-9

    Article  CAS  Google Scholar 

  • Hong F, Qiu K (2008) An alternative carbon source from konjac powder for enhancing production of bacterial cellulose in static cultures by a model strain Acetobacter aceti subsp. xylinus ATCC 23770. Carbohydr Polym 72(3):545–549. doi:10.1016/j.carbpol.2007.09.015

    Article  CAS  Google Scholar 

  • Hornung M, Ludwig M, Schmauder H (2007) Optimizing the production of bacterial cellulose in surface culture: a novel aerosol bioreactor working on a fed batch principle (part 3. Eng Life Sci 7(1):35–41. doi:10.1002/elsc.200620164

    Article  CAS  Google Scholar 

  • Hu X, Feng L, Xie A, Wei W, Wang S, Zhang J, Dong W (2014) Synthesis and characterization of a novel hydrogel: salecan/polyacrylamide semi-IPN hydrogel with a desirable pore structure. J Mater Chem B 2(23):3646–3658. doi:10.1016/j.carbpol.2014.01.051

    Article  CAS  Google Scholar 

  • Hu X, Wei W, Qi X, Yu H, Feng L, Li J, Wang S, Zhang J, Dong W (2015) Preparation and characterization of a novel pH-sensitive Salecan-g-poly (acrylic acid) hydrogel for controlled release of doxorubicin. J Mater Chemistry B 3(13):2685–2697

    Article  CAS  Google Scholar 

  • Hwang JW, Yang YK, Hwang JK, Pyun YR, Kim YS (1999) Effects of pH and dissolved oxygen on cellulose production by Acetobacter xylinum BRC5 in agitated culture. J Biosci Bioeng 88(2):183–188. doi:10.1016/S1389-1723(99)80199-6

    Article  CAS  PubMed  Google Scholar 

  • Iguchi M, Yamanaka S, Budhiono A (2000) Bacterial cellulose—a masterpiece of nature’s arts. J Mater Sci 35(2):261–270. doi:10.1023/A:1004775229149

    Article  CAS  Google Scholar 

  • Imeson A (2010) Food stabilisers, thickening and gelling agents. Wiley, Chichester, UK

    Google Scholar 

  • Jagodzinski PP, Wiaderkiewicz R, Kurzawski G, Kloczewiak M, Nakashima H, Hyjek E, Yamamoto N, Uryu T, Kaneko Y, Posner MR (1994) Mechanism of the inhibitory effect of curdlan sulfate on HIV-1 infection in vitro. Virol 202(2):735–745. doi:10.1006/viro.1994.1395

    Article  CAS  Google Scholar 

  • Janeway CA Jr, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20(1):197–216. doi:10.1146/annurev.immunol.20.083001.084359

    Article  CAS  PubMed  Google Scholar 

  • Jeong SI, Lee SE, Yang H, Jin Y-H, Park C-S, Park YS (2010) Toxicologic evaluation of bacterial synthesized cellulose in endothelial cells and animals. Mol Cell Toxicol 6(4):370–377. doi:10.1007/s13273-010-0049-7

    Article  CAS  Google Scholar 

  • Jin Y, Zhang H, Yin Y, Nishinari K (2006) Comparison of curdlan and its carboxymethylated derivative by means of rheology, DSC, and AFM. Carbohydr Res 341(1):90–99. doi:10.1016/j.carres.2005.11.003

    Article  CAS  PubMed  Google Scholar 

  • Jung Y, Paik S, Lee S, Jung S (2004) Cyclosophoraose as a novel chiral stationary phase for enantioseparation. J Microbiol Biotechnol 11(14):1338–1342

    Google Scholar 

  • Jung H-K, Hong J-H, Park S-C, Park B-K, Nam D-H, Kim S-D (2007a) Production and physicochemical characterization of β-glucan produced by Paenibacillus polymyxa JB115. Biotechnol Bioprocess Eng 12(6):713–719. doi:10.1007/BF02931090

    Article  CAS  Google Scholar 

  • Jung H, Kang E, Chang Z-Q, Hong J, Kim S, Park B, Yun H, Park S (2007b) Pathogenicity of Paenibacillus polymyxa JB115 and single-dose toxicity of its culture broth containing β-glucan in rats. Korean J Vet Res 47(4):379–387

    Google Scholar 

  • Jung H-K, Park S-C, Park B-K, Hong J-H (2008a) Physiological activities of a β-glucan produced by Panebacillus polymyxa. Biotechnol Lett 30(9):1545–1551. doi:10.1007/s10529-008-9732-3

    Article  CAS  PubMed  Google Scholar 

  • Jung H-K, Park S-C, Park B-K, Kim S-D, Nam D-H, Hong J-H (2008b) Characteristics of the antibacterial substance produced by Paenibacillus polymyxa JB115. KSBB J 23(1):65–69

    Google Scholar 

  • Jung H-I, Lee O-M, Jeong J-H, Jeon Y-D, Park K-H, Kim H-S, An W-G, Son H-J (2010) Production and characterization of cellulose by Acetobacter sp. V6 using a cost-effective molasses–corn steep liquor medium. Appl Biochem Biotechnol 162(2):486–497. doi:10.1007/s12010-009-8759-9

    Article  CAS  PubMed  Google Scholar 

  • Kalyanasundaram GT, Doble M, Gummadi SN (2012) Production and downstream processing of (1→3)-β-D-glucan from mutant strain of Agrobacterium sp. ATCC 31750. AMB Express 2(1). doi:10.1186/2191-0855-2-31

  • Kanzawa Y, Harada T, Koreeda A, Harada A (1987) Curdlan gel formed by neutralizing its alkaline solution. Agric Biol Chem 51(7):1839–1843. doi:10.1080/00021369.1987.10868308

    CAS  Google Scholar 

  • Karahan AG, Akoğlu A, Çakır İ, Kart A, Çakmakçı ML, Uygun A, Göktepe F (2011) Some properties of bacterial cellulose produced by new native strain Gluconacetobacter sp. A06O2 obtained from Turkish vinegar. J Appl Polym Sci 121(3):1823–1831. doi:10.1002/app.33818

    Article  CAS  Google Scholar 

  • Karnezis T, Fisher HC, Neumann GM, Stone BA, Stanisich VA (2002) Cloning and characterization of the phosphatidylserine synthase gene of Agrobacterium sp. strain ATCC 31749 and effect of its inactivation on production of high-molecular-mass (1→3)-β-D-glucan (curdlan. J Bacteriol 184(15):4114–4123. doi:10.1128/JB.184.15.4114-4123.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karnezis T, Epa VC, Stone BA, Stanisich VA (2003) Topological characterization of an inner membrane (1→3)-β-D-glucan (curdlan) synthase from Agrobacterium sp. strain ATCC31749. Glycobiology 13(10):693–706. doi:10.1093/glycob/cwg093

    Article  CAS  PubMed  Google Scholar 

  • Karthikeyan R, Rakshit S, Baradarajan A (1996) Optimization of batch fermentation conditions for dextran production. Bioprocess Eng 15(5):247–251. doi:10.1007/BF02391585

    Article  CAS  Google Scholar 

  • Kawano Y, Saotome T, Ochiai Y, Katayama M, Narikawa R, Ikeuchi M (2011) Cellulose accumulation and a cellulose synthase gene are responsible for cell aggregation in the cyanobacterium Thermosynechococcus vulcanus RKN. Plant Cell Physiol 52(6):957–966. doi:10.1093/pcp/pcr047

    Article  CAS  PubMed  Google Scholar 

  • Keshk SM (2014) Bacterial cellulose production and its industrial applications. J Bioprocess Biotech 4:150. doi:10.4172/2155-9821.1000150

    Article  Google Scholar 

  • Kim D, Robyt JF, Lee S-Y, Lee J-H, Kim Y-M (2003a) Dextran molecular size and degree of branching as a function of sucrose concentration, pH, and temperature of reaction of Leuconostoc mesenteroides B-512FMCM dextransucrase. Carbohydr Res 338(11):1183–1189. doi:10.1016/S0008-6215(03)00148-4

    Article  CAS  PubMed  Google Scholar 

  • Kim M-K, Ryu K-E, Choi W-A, Rhee Y-H, Lee I-Y (2003b) Enhanced production of (1→3)-β-D-glucan by a mutant strain of Agrobacterium species. Biochem Eng J 16(2):163–168. doi:10.1016/S1369-703X(03)00032-9

    Article  CAS  Google Scholar 

  • Klemm D, Schumann D, Udhardt U, Marsch S (2001) Bacterial synthesized cellulose—artificial blood vessels for microsurgery. Prog Polym Sci 26(9):1561–1603. doi:10.1016/S0079-6700(01)00021-1

    Article  CAS  Google Scholar 

  • Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44(22):3358–3393. doi:10.1002/anie.200460587

    Article  CAS  Google Scholar 

  • Knecht JC, Schiffman G, Austrian R (1970) Some biological properties of pneumococcus type 37 and the chemistry of its capsular polysaccharide. J Exp Med 132(3):475–487. doi:10.1084/jem.132.3.475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komaniecka I, Choma A (2003) Isolation and characterization of periplasmic cyclic β-glucans of Azorhizobium caulinodans. FEMS Microbiol Lett 227(2):263–269. doi:10.1016/S0378-1097(03)00690-6

    Article  CAS  PubMed  Google Scholar 

  • Koreeda A, Harada T, Ogawa K, Sato S, Kasai N (1974) Study of the ultrastructure of gel-forming (1 → 3)-β-D-glucan (curdlan-type polysaccharide) by electron microscopy. Carbohydr Res 33(2):396–399. doi:10.1016/S0008-6215(00)82823-2

    Article  CAS  PubMed  Google Scholar 

  • Kothari D, Das D, Patel S, Goyal A (2015) Dextran and food application. Polysaccharides: Bioactivity and Biotechnology:735–752. doi:10.1007/978-3-319-16298-0_66

  • Koumoto K, Umeda M, Numata M, Matsumoto T, Sakurai K, Kunitake T, Shinkai S (2004) Low Mw sulfated curdlan with improved water solubility forms macromolecular complexes with polycytidylic acid. Carbohydr Res 339(1):161–167. doi:10.1016/j.carres.2003.09.022

    Article  CAS  PubMed  Google Scholar 

  • Kralisch D, Hessler N, Klemm D, Erdmann R, Schmidt W (2010) White biotechnology for cellulose manufacturing—the HoLiR concept. Biotechnol and Bioeng 105(4):740–747. doi:10.1002/bit.22579

    CAS  Google Scholar 

  • Kralj S, Stripling E, Sanders P, van Geel-Schutten GH, Dijkhu-izen L (2005) Highly hydrolytic reuteransucrase from probiotic Lactobacillus reuteri strain ATCC 55730. Appl Environ Microbiol 71:3942–3950. doi:10.1128/AEM.71.7.3942-3950.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kulicke WM, Heinze T (2005) Improvements in polysaccharides for use as blood plasma expanders. Macromol Symposia 231:47–59. doi:10.1002/masy.200590024

    Article  Google Scholar 

  • Kumar AS, Mody K (2009) Microbial exopolysaccharides: variety and potential applications. In: Rehm BH (ed) Microbial production of biopolymers and polymer precursors: applications and perspectives. Caister Academic Press, Norfolk, UK, pp. 229–253

    Google Scholar 

  • Kwon C, Choi Y-H, Kim N, Yoo JS, Yang C-H, Kim H-W, Jung S (2000) Complex forming ability of a family of isolated cyclosophoraoses with ergosterol and its Monte Carlo docking computational analysis. J Incl Phenom Macrocycl Chem 36(1):55–64. doi:10.1023/A:1008050432556

    Article  CAS  Google Scholar 

  • Łaskiewicz B (1998) Solubility of bacterial cellulose and its structural properties. J Appl Polym Sci 67(11):1871–1876. doi:10.1002/(SICI)1097-4628(19980314)67:11<1871::AID-APP5>3.0.CO;2-I

    Article  Google Scholar 

  • Leathers TD (1998) Utilization of fuel ethanol residues in production of the biopolymer alternan. Process Biochem 33(1):15–19. doi:10.1016/S0032-9592(97)00054-X

    Article  CAS  Google Scholar 

  • Lee J-h, Lee IY (2001) Optimization of uracil addition for curdlan (β-1→3-glucan) production by Agrobacterium sp. Biotechnol Lett 23(14):1131–1134. doi:10.1023/A:1010516001444

    Article  CAS  Google Scholar 

  • Lee J-H, Park YH (2001) Optimal production of curdlan by Agrobacterium sp. with feedback inferential control of optimal pH profile. Biotechnol Lett 23(7):525–530. doi:10.1023/A:1010374519891

    Article  CAS  Google Scholar 

  • Lee I, Seo W, Kim G, Kim M, Park C, Park Y (1997) Production of curdlan using sucrose or sugar cane molasses by two-step fed-batch cultivation of Agrobacterium species. J Industrial Microbiol Biotechnol 18(4):255–259. doi:10.1038/sj.jim.2900378

  • Lee I, Kim M, Lee J, Seo W, Jung J, Lee H, Park Y (1999) Influence of agitation speed on production of curdlan by Agrobacterium species. Bioprocess Eng 20(4):283–287. doi:10.1007/PL00009049

    CAS  Google Scholar 

  • Lee S, Choi Y, Lee S, Jeong K, Jung S (2004) Chiral recognition based on enantioselective interactions of propranolol enantiomers with cyclosophoraoses isolated from Rhizobium meliloti. Chirality 16(3):204–210. doi:10.1002/chir.20010

    Article  CAS  PubMed  Google Scholar 

  • Leemhuis H, Pijning T, Dobruchowska JM, van Leeuwen SS, Kralj S, Dijkstra BW, Dijkhuizen L (2013) Glucansucrases: three-dimensional structures, reactions, mechanism, α-glucan analysis and their implications in biotechnology and food applications. J Biotechnol 163(2):250–272. doi:10.1016/j.jbiotec.2012.06.037

    Article  CAS  PubMed  Google Scholar 

  • Llull D, Muñoz R, López R, García E (1999) A single gene (tts) located outside the cap locus directs the formation of Streptococcus pneumoniae type 37 capsular polysaccharide type 37 Pneumococci are natural, genetically binary strains. J Exp Med 190(2):241–252. doi:10.1084/jem.190.2.241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McIntosh M, Stone B, Stanisich V (2005) Curdlan and other bacterial (1→3)-β-D-glucans. Appl Microbiol Biotechnol 68(2):163–173. doi:10.1007/s00253-005-1959-5

    Article  CAS  PubMed  Google Scholar 

  • Mehta K, Pfeffer S, Brown RM Jr (2015) Characterization of an acsD disruption mutant provides additional evidence for the hierarchical cell-directed self-assembly of cellulose in Gluconacetobacter xylinus. Cellulose 22(1):119–137. doi:10.1007/s10570-014-0521-y

    Article  CAS  Google Scholar 

  • Ménard R, Alban S, de Ruffray P, Jamois F, Franz G, Fritig B, Yvin J-C, Kauffmann S (2004) β-1,3-glucan sulfate, but not β-1,3-glucan, induces the salicylic acid signaling pathway in tobacco and Arabidopsis. Plant Cell 16(11):3020–3032. doi:10.1105/tpc.104.024968

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miller K, Gore R, Johnson R, Benesi A, Reinhold V (1990) Cell-associated oligosaccharides of Bradyrhizobium spp. J Bacteriol 172(1):136–142

    CAS  PubMed  PubMed Central  Google Scholar 

  • Monsan P, Bozonnet S, Albenne C, Joucla G, Willemot R-M, Remaud-Siméon M (2001) Homopolysaccharides from lactic acid bacteria. Int Dairy J 11(9):675–685. doi:10.1016/S0958-6946(01)00113-3

    Article  CAS  Google Scholar 

  • Mooser G (1992) Glycosidases and glycosyltransferases. In: Sigman DS (ed) The Enzymes. Elsevier, Amsterdam 20:187–221. doi:10.1016/S1874-6047(08)60023-2

  • Morgan JL, Strumillo J, Zimmer J (2013) Crystallographic snapshot of cellulose synthesis and membrane translocation. Nature 493(7431):181–186. doi:10.1038/nature11744

    Article  CAS  PubMed  Google Scholar 

  • Nakayama A, Kakugo A, Gong JP, Osada Y, Takai M, Erata T, Kawano S (2004) High mechanical strength double-network hydrogel with bacterial cellulose. Adv Funct Mater 14(11):1124–1128. doi:10.1002/adfm.200305197

    Article  CAS  Google Scholar 

  • Ogawa K, Wanatabe T, Tsurugi J, Ono S (1972) Conformational behavior of a gel-forming (1→3)-β-D-glucan in alkaline solution. Carbohydr Res 23(3):399–405. doi:10.1016/S0008-6215(00)82709-3

    Article  CAS  Google Scholar 

  • Okuyama K, Otsubo A, Fukuzawa Y, Ozawa M, Harada T, Kasai N (1991) Single-helical structure of native curdlan and its aggregation state. J Carbohydr Chem 10(4):645–656. doi:10.1080/07328309108543938

    Article  CAS  Google Scholar 

  • Pa’e N (2009) Rotary discs reactor for enhanced production of microbial cellulose. Master Degree Thesis, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, Skudai, Johor

  • Padrão J, Gonçalves S, Silva JP, Sencadas V, Lanceros-Méndez S, Pinheiro AC, Vicente AA, Rodrigues LR, Dourado F (2016) Bacterial cellulose-lactoferrin as an antimicrobial edible packaging. Food Hydrocoll 58:126–140. doi:10.1016/j.foodhyd.2016.02.019

    Article  CAS  Google Scholar 

  • Palomba S, Cavella S, Torrieri E, Piccolo A, Mazzei P, Blaiotta G, Ventorino V, Pepe O (2012) Wheat sourdough from Leuconostoc lactis and Lactobacillus curvatus exopolysaccharide-producing starter culture: polyphasic screening, homopolysaccharide composition and viscoelastic behavior. App Environ Microbiol 78(8):2737–2747. doi:10.1128/AEM.07302-11

    Article  CAS  Google Scholar 

  • Pérez-Mendoza D, Rodríguez-Carvajal MÁ, Romero-Jiménez L, Farias Gde A, Lloret J, Gallegos MT, Sanjuán J (2015) Novel mixed-linkage β-glucan activated by c-di-GMP in Sinorhizobium meliloti. Proc Nati. Acad Sci 112(7):E757–E765. doi:10.1073/pnas.1421748112

    Article  CAS  Google Scholar 

  • Phillips KR, Lawford HG (1983) Curdlan: its properties and production in batch and continuous fermentations. In: Bushell DE (ed) Progress in industrial microbiology, vol 18. Elsevier, Amsterdam, pp. 201–229

    Google Scholar 

  • Phillips GO, Williams PA (2009) Handbook of hydrocolloids. Woodhead Publishing Limited, New York

    Book  Google Scholar 

  • Phisalaphong M, Chiaoprakobkij N, Gama M, Gatenholm P, Klemm D (2012) Applications and products—Nata de Coco. In: Gama M, Gatenholm P, Klemm D (eds) Bacterial nanocellulose: a sophisticated multifunctional material. CRC Press, Baco Raton, pp 143–156

  • Popescu I, Pelin IM, Butnaru M, Fundueanu G, Suflet DM (2013) Phosphorylated curdlan microgels. Preparation, characterization, and in vitro drug release studies. Carbohydr Polym 94(2):889–898. doi:10.1016/j.carbpol.2013.02.014

    Article  CAS  PubMed  Google Scholar 

  • Portilho M, Matioli G, Zanin GM, de Moraes FF, Scamparini ARP (2006) Production of insoluble exopolysaccharide of Agrobacterium sp.(ATCC 31749 and IFO 13140). In: McMillan JD (ed) Twenty-seventh symposium on biotechnology for fuels and chemicals. Springer, Berlin, pp. 864–869

    Chapter  Google Scholar 

  • Purwadaria T, Gunawan L, Gunawan AW (2010) The production of nata colored by Monascus purpureus J1 pigments as functional food. Microbiol Indonesia 4(1):2

    Article  Google Scholar 

  • Qi X, Hu X, Wei W, Yu H, Li J, Zhang J, Dong W (2015) Investigation of Salecan/poly (vinyl alcohol) hydrogels prepared by freeze/thaw method. Carbohydr Polym 118:60–69. doi:10.1016/j.carbpol.2014.11.021

    Article  CAS  PubMed  Google Scholar 

  • Rani MU, Udayasankar K, Appaiah K (2011) Properties of bacterial cellulose produced in grape medium by native isolate Gluconacetobacter sp. J Appl Polym Sci 120(5):2835–2841. doi:10.1002/app.33307

    Article  CAS  Google Scholar 

  • Rehm BHA (2009a) Alginates: biology and applications. Springer, Berlin

    Book  Google Scholar 

  • Rehm BHA (2009b) Microbial production of biopolymers and polymer precursors: applications and perspectives. Caister Academic Press, Norfolk, UK

    Google Scholar 

  • Robyt JF (1995) Mechanisms in the glucansucrase synthesis of polysaccharides and oligosaccharides from sucrose. Adv Carbohydr Chem Biochem 51:133–168

    Article  CAS  PubMed  Google Scholar 

  • Rolin DB, Pfeffer PE, Osman SF, Szwergold BS, Kappler F, Benesi AJ (1992) Structural studies of a phosphocholine substituted β-(1,3);(1,6) macrocyclic glucan from Bradyrhizobium japonicum USDA 110. Biochim et Biophys Acta (BBA)-Gen Subj 1116(3):215–225. doi:10.1016/0304-4165(92)90014-L

    Article  CAS  Google Scholar 

  • Schmid J, Sieber V, Rehm B (2015) Bacterial exopolysaccharides: biosynthesis pathways and engineering strategies. Frontiers Microbiol 6:496. doi:10.3389/fmicb.2015.00496

    Article  Google Scholar 

  • Shah N, Ul-Islam M, Khattak WA, Park JK (2013) Overview of bacterial cellulose composites: a multipurpose advanced material. Carbohydr Polym 98(2):1585–1598. doi:10.1016/j.carbpol.2013.08.018

    Article  CAS  PubMed  Google Scholar 

  • Shi Z, Zhang Y, Phillips GO, Yang G (2014) Utilization of bacterial cellulose in food. Food Hydrocoll 35:539–545. doi:10.1016/j.foodhyd.2013.07.012

    Article  CAS  Google Scholar 

  • Silvestre AJ, Freire CS, Neto CP (2014) Do bacterial cellulose membranes have potential in drug-delivery systems? Expert Opin Drug Del 11(7):1113–1124. doi:10.1517/17425247.2014.920819

    Article  CAS  Google Scholar 

  • Son HJ, Kim HG, Kim KK, Kim HS, Kim YG, Lee SJ (2003) Increased production of bacterial cellulose by Acetobacter sp. V6 in synthetic media under shaking culture conditions. Bioresource Technol 86(3):215–219. doi:10.1016/S0960-8524(02)00176-1

    Article  Google Scholar 

  • Song HJ, Li H, Seo JH, Kim MJ, Kim SJ (2009) Pilot-scale production of bacterial cellulose by a spherical type bubble column bioreactor using saccharified food wastes. Korean J Chem Eng 26(1):141–146. doi:10.1007/s11814-009-0022-0

    Article  Google Scholar 

  • Stasinopoulos SJ, Fisher PR, Stone BA, Stanisich VA (1999) Detection of two loci involved in (1→3)-β-glucan (curdlan) biosynthesis by Agrobacterium sp. ATCC31749, and comparative sequence analysis of the putative curdlan synthase gene. Glycobiology 9(1):31–41

    Article  CAS  PubMed  Google Scholar 

  • Suflet DM, Nicolescu A, Popescu I, Chitanu GC (2011) Phosphorylated polysaccharides. 3. Synthesis of phosphorylated curdlan and its polyelectrolyte behaviour compared with other phosphorylated polysaccharides. Carbohydr Polym 84(3):1176–1181. doi:10.1016/j.carbpol.2011.01.010

    Article  CAS  Google Scholar 

  • Swistowska AM, Wittrock S, Collisi W, Hofer B (2008) Heterologous hyper-expression of a glucansucrase-type glycosyltransferase gene. Appl Microbiol Biotechnol 79(2):255–261. doi:10.1007/s00253-008-1435-0

    Article  CAS  PubMed  Google Scholar 

  • Tabuchi M (2007) Nanobiotech versus synthetic nanotech? Nature Biotechnol 25(4):389–390. doi:10.1038/nbt0407-389

    Article  CAS  Google Scholar 

  • Tingirikari JMR, Kothari D, Goyal A (2014) Superior prebiotic and physicochemical properties of novel dextran from Weissella cibaria JAG8 for potential food applications. Food Funct 5(9):2324–2330. doi:10.1039/C4FO00319E

    Article  CAS  PubMed  Google Scholar 

  • Toida T, Amornrut C, Linhardt RJ (2003) Structure and bioactivity of sulfated polysaccharides. Trends Glycosci Glycotechnol 15(81):29–46

    Article  CAS  Google Scholar 

  • Tyagi N, Suresh S (2016) Production of cellulose from sugarcane molasses using Gluconacetobacter intermedius SNT-1: optimization & characterization. J Clean Prod 112:71–80. doi:10.1016/j.jclepro.2015.07.054

    Article  CAS  Google Scholar 

  • Ullrich M (2009) Bacterial polysaccharides: current innovations and future trends. Caister Academic Press, Norfolk, UK

    Google Scholar 

  • Venkatachalam G, Gummadi S, Doble M (2013) Production of cyclic β-glucans. In: Cyclic β-glucans from microorganisms. Springer, Berlin, pp 53–62

  • Vujičić-Žagar A, Pijning T, Kralj S, López CA, Eeuwema W, Dijkhuizen L, Dijkstra BW (2010) Crystal structure of a 117 kDa glucansucrase fragment provides insight into evolution and product specificity of GH70 enzymes. Proc Natl Acad Sci U S A 107(50):21406–21411. doi:10.1073/pnas.1007531107

    Article  PubMed  PubMed Central  Google Scholar 

  • Watase M, Nishinari K (1994) Rheology and DSC of curdlan—DMSO—water systems. In: Nishinari K, Doi E (eds) Food hydrocolloids. Springer, Berlin, pp. 125–129

    Chapter  Google Scholar 

  • Wei W, Hu X, Qi X, Yu H, Liu Y, Li J, Zhang J, Dong W (2015) A novel thermo-responsive hydrogel based on salecan and poly (N-isopropylacrylamide): synthesis and characterization. Colloids Surf B Biointerfaces 125:1–11. doi:10.1016/j.colsurfb.2014.10.057

    Article  CAS  PubMed  Google Scholar 

  • West TP (2006) Pyrimidine base supplementation effects curdlan production in Agrobacterium sp. ATCC 31749. J Basic Microbiol 46(2):153–157. doi:10.1002/jobm.200510067

    Article  CAS  PubMed  Google Scholar 

  • West TP (2009a) Effect of yeast extract supplementation on curdlan production from condensed corn distillers solubles. Res J Microbiol 4(5):202–207

    Article  Google Scholar 

  • West TP (2009b) Elevated curdlan production by a mutant of Agrobacterium sp. ATCC 31749. J Basic Microbiol 49(6):589–592. doi:10.1002/jobm.200900137

    Article  CAS  PubMed  Google Scholar 

  • West TP (2016) Effect of nitrogen source concentration on curdlan production by Agrobacterium sp. ATCC 31749 grown on prairie cordgrass hydrolysates. Prep Biochem Biotechnol 46(1):85–90. doi:10.1080/10826068.2014.985835

    Article  CAS  PubMed  Google Scholar 

  • West TP, Nemmers B (2008) Curdlan production by Agrobacterium sp. ATCC 31749 on an ethanol fermentation coproduct. J Basic Microbiol 48(1):65–68. doi:10.1002/jobm.200700294

    Article  CAS  PubMed  Google Scholar 

  • Whitney J, Howell P (2013) Synthase-dependent exopolysaccharide secretion in Gram-negative bacteria. Trends Microbiol 21(2):63–72. doi:10.1016/j.tim.2012.10.001

    Article  CAS  PubMed  Google Scholar 

  • Wiater A, Szczodrak J, Pleszczyńska M (2005) Optimization of conditions for the efficient production of mutan in streptococcal cultures and post-culture liquids. Acta Biol Hung 56(1–2):137–150. doi:10.1556/ABiol.56.2005.1-2.14

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Zhan X, Liu H, Zheng Z (2008) Enhanced production of curdlan by Alcaligenes faecalis by selective feeding with ammonia water during the cell growth phase of fermentation. Chin J Biotechnol 24(6):1035–1039. doi:10.1016/S1872-2075(08)60049-7

    Article  CAS  Google Scholar 

  • Wu RQ, Li ZX, Yang JP, Xing XH, Shao DY, Xing KL (2010) Mutagenesis induced by high hydrostatic pressure treatment: a useful method to improve the bacterial cellulose yield of a Gluconoacetobacter xylinus strain. Cellulose 17(2):399–405. doi:10.1007/s10570-009-9388-8

    Article  CAS  Google Scholar 

  • Xiu A, Kong Y, Zhou M, Zhu B, Wang S, Zhang J (2010) The chemical and digestive properties of a soluble glucan from Agrobacterium sp. ZX09. Carbohydr Polym 82(3):623–628. doi:10.1016/j.carbpol.2010.05.027

    Article  CAS  Google Scholar 

  • Xiu A, Zhan Y, Zhou M, Zhu B, Wang S, Jia A, Dong W, Cai C, Zhang J (2011a) Results of a 90-day safety assessment study in mice fed a glucan produced by Agrobacterium sp. ZX09. Food Chem Toxicol 49(9):2377–2384. doi:10.1016/j.fct.2011.06.050

    Article  CAS  PubMed  Google Scholar 

  • Xiu A, Zhou M, Zhu B, Wang S, Zhang J (2011b) Rheological properties of Salecan as a new source of thickening agent. Food Hydrocoll 25(7):1719–1725. doi:10.1016/j.foodhyd.2011.03.01

    Article  CAS  Google Scholar 

  • Yan JK, Liu JL, Sun YJ, Tang S, Mo ZY, Liu YS (2015) Green synthesis of biocompatible carboxylic curdlan-capped gold nanoparticles and its interaction with protein. Carbohydr Polym 117:771–777. doi:10.1016/j.carbpol.2014.10.048

    Article  CAS  PubMed  Google Scholar 

  • Yang XY, Huang C, Guo HJ, Xiong L, Li YY, Zhang HR, Chen XD (2013) Bioconversion of elephant grass (Pennisetum purpureum) acid hydrolysate to bacterial cellulose by Gluconacetobacter xylinus. J Appl Microbiol 115(4):995–1002. doi:10.1111/jam.12255

    CAS  PubMed  Google Scholar 

  • Yotsuzuka F (2001) Curdlan. In: Cho SS, Dreher ML (eds) Handbook of dietary fiber. Dekker, New York, pp. 737–757

    Google Scholar 

  • Yu L, Wu J, Liu J, Zhan X, Zheng Z, Lin CC (2011) Enhanced curdlan production in Agrobacterium sp. ATCC 31749 by addition of low-polyphosphates. Biotechnol Bioprocess Eng 16(1):34–41. doi:10.1007/s12257-010-0145-5

    Article  CAS  Google Scholar 

  • Zeng X, Small DP, Wan W (2011) Statistical optimization of culture conditions for bacterial cellulose production by Acetobacter xylinum BPR 2001 from maple syrup. Carbohydr Polym 85(3):506–513. doi:10.1016/j.carbpol.2011.02.034

    Article  CAS  Google Scholar 

  • Zhang R, Edgar KJ (2015) Water-soluble aminocurdlan derivatives by chemoselective azide reduction using NaBH 4. Carbohydr Polym 122:84–92. doi:10.1016/j.carbpol.2014.12.020

    Article  CAS  PubMed  Google Scholar 

  • Zhang HT, Zhan XB, Zheng ZY, Wu JR, English N, Yu XB, Lin CC (2012) Improved curdlan fermentation process based on optimization of dissolved oxygen combined with pH control and metabolic characterization of Agrobacterium sp. ATCC 31749. Appl Microbiol Biotechnol 93(1):367–379. doi:10.1007/s00253-011-3448-3

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Xia L, Pang W, Wang T, Chen P, Zhu B, Zhang J (2013) A novel soluble β-1,3-D-glucan Salecan reduces adiposity and improves glucose tolerance in high-fat diet-fed mice. Br J Nutr 109(2):254–262. doi:10.1017/s0007114512000980

    Article  CAS  PubMed  Google Scholar 

  • Zheng Z, Jiang Y, Zhan X, Ma L, Wu J, Zhang L, Lin C (2014) An increase of curdlan productivity by integration of carbon/nitrogen sources control and sequencing dual fed-batch fermentors operation. Appl Biochem Microbiol 50(1):35–42. doi:10.1134/S000368381401013X

    Article  CAS  Google Scholar 

  • Zhou L, Sun D, Hu L, Li Y, Yang J (2007) Effect of addition of sodium alginate on bacterial cellulose production by Acetobacter xylinum. J Ind Microbiol Biotechnol 34(7):483–489. doi:10.1007/s10295-007-0218-4

    Article  CAS  PubMed  Google Scholar 

  • Zhou M, Jia P, Chen J, Xiu A, Zhao Y, Zhan Y, Chen P, Zhang J (2013) Laxative effects of Salecan on normal and two models of experimental constipated mice. BMC Gastroenterol 13. doi:10.1186/1471-230x-13-52

  • Zhou M, Pu C, Xia L, Yu X, Zhu B, Cheng R, Xu L, Zhang J (2014a) Salecan diet increases short chain fatty acids and enriches beneficial microbiota in the mouse cecum. Carbohydr Polym 102:772–779. doi:10.1016/j.carbpol.2013.10.091

    Article  CAS  PubMed  Google Scholar 

  • Zhou M, Wang Z, Chen J, Zhan Y, Wang T, Xia L, Wang S, Hua Z, Zhang J (2014b) Supplementation of the diet with Salecan attenuates the symptoms of colitis induced by dextran sulphate sodium in mice. Br J Nutr 111(10):1822–1829. doi:10.1017/s000711451300442x

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianfa Zhang.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Funding

This study was funded by the 973 Program (no. 2013CB945203), NSFC (no. 31471111), and the Fundamental Research Funds for the Central University (no. 30915011101).

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Zhang, J. Bacterial glucans: production, properties, and applications. Appl Microbiol Biotechnol 100, 9023–9036 (2016). https://doi.org/10.1007/s00253-016-7836-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7836-6

Keywords

Navigation