Skip to main content
Log in

Production and physicochemical characterization of β-glucan produced byPaenibacillus polymyxa JB115

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

This study was conducted to develop a bacterial glucan as an animal feed additive. A novel glucan-producing bacterium.Paenibacillus polymyxa JB115, was isolated from Korean soil. The glucan, JB115-BG, produced byP. polymyxa JB115, was confirmed by TLC to be composed of glucose only. By examining FT-IR,1H NMR, and13C NMR spectra, it was proven that JB115-BG has a β-(1→3)- and β-(1→6)-linked glucan structure. The particle size of JB115-BG was distributed in the range of 4–800 μm, with a mean value of 149.1 μm, and its molecular distribution ranged from 6.9∼3,103.7 kDa. It was also observed that 80% of the purified JB115-BG had a molecular distribution above 100 kDa. The obtained results suggest that the glucan JB115-BG can be used as an animal feed additive for the purpose of enhancing immunity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahn, S. G., H. H. Suh, C. H. Lee, S. H. Moon, H. S. Kim, K. H. Ahn, G. S. Kwon, H. M. Oh, and B. D. Yoon (1998) Isolation and characterization of a novel polysaccharide producingBacillus polymyxa A49 KCTC-4648P.J. Microbiol. Biotechnol. 8: 171–177.

    CAS  Google Scholar 

  2. Moon, S. H., J. M. Park, H. Y. Chun, and S. J. Kim (2006) Comparisons of physical properties of bacterial cellulose produced in different culture conditions using saccharified food wastes.Biotechnol. Bioprocess Eng. 11: 26–31.

    Article  CAS  Google Scholar 

  3. Zanchetta, P., N. Lagarde, and J. Guezennec (2003) A new bone-healing material: A hyaluronic acid-like bacterial exopoly saccharide.Calcif. Tissue Int. 72: 74–79.

    Article  CAS  Google Scholar 

  4. Mansel, P. W. A. (1994) Polysaccharides in skin care,Cosmet. Toilet. 109: 67–72.

    Google Scholar 

  5. Chu, K. H. and E. Y. Kim (2006) Predictive modeling of competitive biosorption equilibrium data.Biotechnol. Bioprocess Eng. 11: 67–71.

    Article  CAS  Google Scholar 

  6. Shi, F., Z. Xu, and P. Cen (2006) Optimization of γ-polyglutamic acid production byBacillus subtilis ZJU-7 using a surface-response methodology.Biotechnol. Bioprocess Eng. 11: 251–257.

    Article  CAS  Google Scholar 

  7. Kumar, A. S., K. Mody, and B. Jha (2007) Bacterial exopolysaccharides—a perception.J. Basic Microbiol. 47: 103–117.

    Article  CAS  Google Scholar 

  8. Shoda, M. and Y. Sugano (2005) Recent advances in bacterial cellulose production.Biotechnol. Bioprocess Eng. 10: 1–8.

    Article  CAS  Google Scholar 

  9. Arena, A., T. L. Maugeri, B. Pavone, D. Iannello, C. Gugliandolo, and G. Bisignano (2006) Antiviral and immunoregulatory effect of a novel exopolysaccharide from a marine thermotolerantBacillus licheniformis.Int. Immunopharmacol. 6: 8–13.

    Article  CAS  Google Scholar 

  10. Kawagishi, H., T. Kanao, R. Inagaki, T. Mizuno, K. Shimura, H. Ito, T. Hagiwara, and T. Nakamura (1990) Formolysis of a potent antitumor (1→6) β-d-glucanprotein complex fromAgaricus blazei fruiting bodies and antitumor activity of the resulting products.Carbohydr. Polym. 12: 393–403.

    Article  CAS  Google Scholar 

  11. Liu, C., Q. Lin, Y. Gao, L. Ye, Y. Xing, and T. Xi (2007) Characterization and antitumor activity of a polysaccharide fromStrongylocentrotus nudus eggs.Carbohydr. Polym. 67: 313–318.

    Article  CAS  Google Scholar 

  12. Moradali, M. F., H. Mostafavi, S. Ghods, and G. A. Hedjaroude (2007) Immunomodulating and anticancer agents in the realm of macromycetes fungi.Int. Immunopharmacol. 7: 701–724.

    Article  CAS  Google Scholar 

  13. Park, J. H., M. S. Kang, H. I. Kim, B. H. Chung, K. H. Lee, and W. K. Moon (2003) Study on immune-stimulating activity of β-glucan isolated from the cell wall of yeast mutantSaccharomyces cerevisiae IS2.Kor. J. Food Sci. Technol. 35: 488–492.

    Google Scholar 

  14. Seo, H. P., J. M. Kim, H. D. Shin, T. K. Kim, H. J. Chang, B. R. Park, and J. W. Lee (2002) Production of β-1,3/1,6 glucan byAureobasidium pollulans SM-2001.Kor. J. Biotechnol. Bioeng. 17: 376–380.

    Google Scholar 

  15. Tao, Y., L. Zhang, and P. Cheung (2006) Physicochemical properties and antitumor activities of water soluble native and sulfated hyperbranched mushroom polysaccharides.Carbohydr. Res. 341: 2261–2269.

    Article  CAS  Google Scholar 

  16. Kumari, J. and P. K. Sahoo (2006) Non-specific immune response of healthy and immunocompromised Asia catfish (Clarias batrachus) to several immunostimulants.Aquaculture 255: 133–141.

    Article  CAS  Google Scholar 

  17. Suphantharika, M., P. Khunrae, P. Thanardkit, and C. Verduyn (2003) Preparation of spent brewer's yeast β-glucans with a potential application as an immunostimulant for black tiger shrimp,Penaeus monodom.Bioresour. Technol. 88: 55–60.

    Article  CAS  Google Scholar 

  18. Flickinger, E. A. and G. C. Fahey, Jr. (2002) Pet food and feed applications of inulin, oligofructose and other oligosaccharides.Br. J. Nutr. 87: S297-S300.

    Article  CAS  Google Scholar 

  19. Verdonk, J. M., S. B. Shim, P. van Leeuwen, and M. W. Verstegen (2005) Application of inulin-type fructans in animal feed and pet food.Br. J. Nutr. 93: S125-S138.

    Article  CAS  Google Scholar 

  20. Kim, M. K., I. Y. Lee, J. H. Ko, Y. H. Rhee, and Y. H. Park (1999) Higher intracellular levels of uridine monophosphate under nitrogen-limited conditions enhance the metabolic flux of curdlan synthesis inAgrobacterium species.Biotechnol. Bioeng. 62: 317–323.

    Article  CAS  Google Scholar 

  21. Gummadi, S. N. and K. Kumar (2005) Production of extracellular water insoluble β-1.3-glucan (curdlan) fromBacillus sp. SNC07.Biotechnol. Bioprocess Eng. 10: 546–551.

    Article  CAS  Google Scholar 

  22. Nakanishi, I., K. Kimura, T. Suzuki, M. Ishikawa, I. Banno, T. Sakane, and T. Harada (1976) Demonstration of curdlan-type polysaccharide and some other β-1.3-glucan in microorganisms with aniline blue.J. Gen. Appl. Microbiol. 22: 1–11.

    Article  CAS  Google Scholar 

  23. Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith (1956) Colorimetric method for determination of sugars and related substances.Anal. Chem. 28: 350–356.

    Article  CAS  Google Scholar 

  24. Harada, T., A. Misaki, and H. Saito (1968) Curdlan: a bacterial gel-forming β-(1,3) glucan.Arch. Biochem. Biophys. 124: 292–298.

    Article  CAS  Google Scholar 

  25. Harada, T., M. Masada, K. Fujimori, and I. Maeda (1966) Production of a firm, resilient gel-forming polysaccharide by a mutant ofAlealigenes faecalis var.myxogenes I0C3.Agric. Biol. Chem. 30: 196–198.

    Google Scholar 

  26. He, Z., D. Kisla, L. Zhang, C. Yuan, K. B. Green-Church, and A. E. Yousef (2007) Isolation and identification of aPaenibacillus polymyxa strain that coproduces a novel lantibiotic and polymyxin.Appl. Environ. Microbiol. 73: 168–78.

    Article  CAS  Google Scholar 

  27. Xu, F., Z. C. Geng, J. X. Sun, C. F. Liu, J. L. Ren, R. C. Sun, P. Fowler, and M. S. Baird (2006) Fractional and structural characterization of hemicelluloses from perennial ryegrass (Lolium perenne) and cocksfoot grass (Dactylis glonerata).Carbohydr. Res. 341: 2073–2082.

    Article  CAS  Google Scholar 

  28. Sandula, J., G. Kogan, M. Kacurakova, and E. Machova (1999) Microbial (1→3)-β-D-glucans, their preparation, physico-chemical characterization and immunomodulatory activity.Cabohydr. Polym. 38: 247–253.

    Article  CAS  Google Scholar 

  29. Gonzaga, M. L. C., N. M. P. S. Ricardo, F. Heatley, and S. de A. Soares (2005) Isolation and characterization of polysaccharides fromAgaricus blazei Murill.Carbohydr. Polym. 60: 43–49.

    Article  CAS  Google Scholar 

  30. Huang, Q., Y. Jin, L. Zhang, P. C. K. Cheung, and J. F. Kennedy (2007) Structure, molecular size and antitumor activities of polysaccharides fromPoria cocos mycelia produced in fermenter.Carbohydr. Polym. 70: 324–333.

    Article  CAS  Google Scholar 

  31. Sugawara, T., S. Takahashi, M. Osumi, and N. Ohno (2004) Refinement of the structures of cell-wall glucans ofSchizosacchharomyces pombe by chemical modification and NMR spectroscopy.Carbohydr. Res. 339: 2255–2265.

    Article  CAS  Google Scholar 

  32. Kimura, Y., M. Sumiyoshi, T. Suzuki, T. Suzuki, and M. Sakanaka (2007) Inhibitory effects of water-soluble low molecular-weight β-(1,3–1,6) D-glucan purified fromAureobasidium pullans GM-NH-IA1 strain on food allergic reactions in mice.Int. Immunopharmacol. 7: 963–972.

    Article  CAS  Google Scholar 

  33. Storseth, T. R., S. Kirkvold, J. Skjermo, and K. I. Reitan (2006) A branched β-D-(1→3, 1→6) glucan from the marine diatomChaetoceros debilis (Bacillariophyceae) characterized by NMR.Carbohydr. Res. 341: 2108–2114.

    Article  CAS  Google Scholar 

  34. Kim, Y. T., E. H. Kim, C. Cheong, D. L. Williams, C. W. Kim, and S. T. Lim. (2000) Structural characterization of β-D-(1→3, 1→6)-linked glucans using NMR spectroscopy.Carbohydr. Res. 328: 331–341.

    Article  CAS  Google Scholar 

  35. Silvestein, R. M., G. C. Bassler, and T. C. Morrill (1994)Spectrometric Identification of Organic Compounds. 5th ed. Wiley Interscience, NY, USA.

    Google Scholar 

  36. Altabe, S. G., N. Inon, D. de Mendoza, and R. A. Ugalde (1994) New osmoregulated β(1–3), β(1–6) glucosyltransferase(s) inAzospirillum brasilense.J. Bacteriol. 176: 4890–4898.

    CAS  Google Scholar 

  37. Ohno, N., M. Uchiyama, A. Tsuzuki, K. Tokunaka, N. N. Miura, Y. Adachi, M. W. Aizawa, H. Tamura, S. Tanaka, and T. Yadomae (1999) Solubilization of yeast cell-wall β-(1→3)-D-glucan by sodium hypochlorite oxidation and dimethyl sulfoxide extraction.Carbohydr. Res. 316: 161–172.

    Article  CAS  Google Scholar 

  38. Bohn, A. and J. N. BeMiller (1995) (1→3)-β-D-glucans as biological response modifiers: a review of structure-functional activity relationships.Carbohydr. Polym. 28: 3–14.

    Article  CAS  Google Scholar 

  39. Leung, M. Y. K., C. Liu, J. C. M. Koon, and K. P. Fung (2006) Polysaccharide biological response modifiers.Immunol. Lett. 105: 101–114.

    Article  CAS  Google Scholar 

  40. Krakowski, L., J. Krzyzanowski, Z. Wrona, and A. K. Siwicki (1999) The effect of nonspecific immunostimulation of pregnant mares with 1,3/1,6 glucan and levamisole on the immunoglobulins levels in colostrums, selected indices of nonspecific cellular and humoral immunity in foals in neonatal and postnatal period.Vet. Immunol. Immunopathol. 68: 1–11.

    Article  CAS  Google Scholar 

  41. Seviour, R. J., S. J. Stasinopoulos, D. P. F. Auer, and P. A. Gibbs (1992) Production of pullulan and other exopolysaccharides by filamentous fungi.Crit. Rev. Biotechnol. 12: 279–298.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Dal Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, HK., Hong, JH., Park, SC. et al. Production and physicochemical characterization of β-glucan produced byPaenibacillus polymyxa JB115. Biotechnol. Bioprocess Eng. 12, 713–719 (2007). https://doi.org/10.1007/BF02931090

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931090

Keywords

Navigation