Skip to main content
Log in

Enhanced curdlan production in Agrobacterium sp. ATCC 31749 by addition of low-polyphosphates

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

A large amount of adenosine triphosphate with high energy phosphate bonds is required for uridine triphosphate regeneration during curdlan biosynthesis by Agrobacterium sp. ATCC 31749. To supply high energy for curdlan synthesis, three low-polyphosphates (Na4P2O7, Na5P3O10, and (NaPO3)6) with higher energy phosphate bonds were employed to substitute for KH2PO4-K2HPO4 in fermentation medium. Two genes encoding the polyphosphate metabolizing enzymes, polyphosphate kinase and exopolyphosphatase, were amplified and showed 95% homology to those in Agrobacterium sp. C58 by sequence analysis. The curdlan yields were enhanced by 23 and 134% when phosphate concentrations 0.024 mol/L of Na5P3O10 and 0.048 mol/L of (NaPO3)6 respectively, were added in the medium. The maximum curdlan yield of 30 ± 1.02 g/L was obtained with the addition of 0.048 mol/L of (NaPO3)6 with 5 g/L CaCO3 in the medium. When CaCO3 was removed from the culture and the three lowpolyphosphates were added, the pH and biomass yield dropped remarkably and little or no curdlan was produced. The culture containing 0.048 mol/L of (NaPO3)6 was mixed with KH2PO4-K2HPO4 and CaCO3 in the medium, but showed no effect on curdlan production. However, curdlan yield was improved by 49 ∼ 60% when CaCO3 was removed from the medium and KH2PO4-K2HPO4 acted as a buffer. It appears that the positive effect of (NaPO3)6 on curdlan production required the buffering capacity of CaCO3 and the absence of KH2PO4-K2HPO4 competing as a phosphate supplier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Harada, T., K. Fujimori, S. Hirose, and M. Masada (1966) Growth and glucan (10C3K) production by a mutant of Alcaligenes faecalis vax. myxogenes in defined medium. Agric. Biol. Chem. 30: 764–769.

    CAS  Google Scholar 

  2. Jagodzinski, P. P., R. Wiaderkiewicz, G. Kurzawski, M. Kloczewiak, and H. Nakashima (1994) Mechanism of the inhibitory effect of curdlan sulfate on HIV-I infection in vitro. Virology 202: 735–745.

    Article  CAS  Google Scholar 

  3. Mikio, K., O. Yoshiro, O. Hirotomo, K. Yoshikazu, I. Hiroshi, M. Hisashi, and K. Takeshi (1995) Water soluble β-(1,3)-glucan derivative and antiviral agent containing the derivative. Jpn Patent 07228601.

  4. Evans, S. G., D. Morrison, Y. Kaneko, and I. Havlik (1998) The effect of curdlan sulfate on development in vitro of Plasmodium falciparum. Trans. R. Soc. Trop. Med. Hyg. 92: 87–89.

    Article  CAS  Google Scholar 

  5. Sutherland, I. W. and D. C. Elwood (1979) Microbial exopolysaccharide-industrial polymers of current and future potentia1. pp. 422–427. In: Bull A. T. (ed.). Microbial Technology: Current States and Future Prospects. Cambridge University Press, London.

    Google Scholar 

  6. Lawford, H. G., K. R. Phillips, and G. R. Lawford (1982) Two stage continuous process for the production of thermogelable curdlan-type exopolysaccharide. Biotechnol. Lett. 4: 689–694.

    Article  CAS  Google Scholar 

  7. Lee, I. Y., M. K. Kim, J. H. Lee, W. T. Seo, J. K. Jung, H. W. Lee, and Y. H. Park (1999) Influence of agitation speed on production of curdlan by Agrobacterium species. Bioproc. Eng. 20: 283–287.

    CAS  Google Scholar 

  8. Kim, M. K., I. Y. Lee, J. H. Lee, K. T. Kim, Y. H. Rhee, and Y. H. Park (2000) Residual phosphate concentration under nitrogen 1imiting conditions regulates curdlan production in Agrobacterium species. J. Ind. Microbiol. Biotechnol. 25: 180–183.

    Article  CAS  Google Scholar 

  9. Lee, J. H. and I. Y. Lee (2001) Optimization of uracil addition for curdlan (β-1,3-glucan) production by Agrobacterium sp. Biotechnol. Lett. 23: 1131–1134.

    Article  CAS  Google Scholar 

  10. Lee, J. H., I. Y. Lee, M. K. Kim, and Y. H. Park (1999) Optimal pH control of batch process for production of curdlan by Agrobacterium species. J. Ind. Microbiol. Biotechnol. 23: 143–148.

    Article  CAS  Google Scholar 

  11. Wu, J., X. Zhan, H. Liu, and Z. Zheng (2008) Enhanced production of curdlan by Alcaligenes faecalis by selective feeding with ammonia water during the cell growth phase of fermentation. Chin. J. Biotech. 24: 1035–1039.

    Article  CAS  Google Scholar 

  12. Kim, M. K., I. Y. Lee, J. H. Ko, Y. H. Rhee, and Y. H. Park (1999) Higher intracellular levels of uridine monophosphate under nitrogen 1imited conditions enhance metabolic flux of curdlan synthesis in Agrobacterium species. Biotechnol. Bioeng. 62: 317–323.

    Article  CAS  Google Scholar 

  13. West, T. P. (2006) Pyrimidine base supplementation effects curdlan production in Agrobacterium sp. ATCC 31749. J. Basic. Microbiol. 46: 153–157.

    Article  CAS  Google Scholar 

  14. Gummadi, S. N. and K. Kumar (2005) Production of extracellular water insoluble β-1,3-glucan (Curdlan) from Bacillus sp. SNC07. Biotechnol. Bioproc. Eng. 10: 546–551.

    Article  CAS  Google Scholar 

  15. Zheng, Z. Y., J. W. Lee, X. B. Zhan, Z. P. Shi, L. Wang, L. Zhu, J. R. Wu, and C. C. Lin (2007) Effect of metabolic structures and energy requirements on curdlan production by Alcaligenes faecalis. Biotechnol. Bioproc. Eng. 12: 359–365.

    Article  CAS  Google Scholar 

  16. Liao, X., T. Deng, Y. Zhu, G. Du, and J. Chen (2008) Enhancement of glutathione production by altering adenosine metabolism of Escherichia coli in a coupled ATP regeneration system with Saccharomyces cerevisiae. J. Appl. Microbiol. 104: 345–352.

    Article  CAS  Google Scholar 

  17. Noguchi, T. (1998) Use of Escherichia coli polyphosphate kinase for oligosaccharide synthesis. Biosci. Biotechnol. Biochem. 62: 1594–1596.

    Article  CAS  Google Scholar 

  18. Ahn, K. and A. Kornberg (1990) Polyphosphate kinase from Escherichia coli: Purification and demonstration of a phosphoenzyme intermediate. J. Biol. Chem. 265: 11734–11739.

    CAS  Google Scholar 

  19. Akiyama, M., E. Crooke, and A. Kornberg (1993) An exopolyphosphatase of Escherichia coli: the enzyme and its ppx gene in a polyphosphate operon. J. Biol. Chem. 268: 633–639.

    CAS  Google Scholar 

  20. Murata, K., T. Uchida, J. Kato, and I. Chibata (1988) Polyphosphate kinase: Distribution, some properties and its application as an ATP regeneration system. Agric. Biol. Chem. 52: 1471–1477.

    CAS  Google Scholar 

  21. Kulaev, I. and V. Vagabov (1999) New aspects of inorganic polyphosphate metabolism and function. J. Biosci. Bioeng. 88: 111–129.

    Article  CAS  Google Scholar 

  22. Kim, K. S., N. N. Rao, and D. Cresson (2002) Inorganic polyphosphate is essential for long-term survival and virulence factors in Shigella and Salmonella spp. Proc. Natl. Acad. Sci. 99: 7675–7680.

    Article  CAS  Google Scholar 

  23. Werner, T. P., N. Amrhein, and F. M. Freimoser (2007) Inorganic polyphosphate occurs in the cell wall of Chlamydomonas reinhardtii and accumulates during cytokinesis. Plant Biol. 7: 1–11.

    Google Scholar 

  24. Nocek, B., S. Kochinyan, M. Proudfoot, G. Brown, E. Evdokimova, J. Osipiuk, A. M. Edwards, A. Savchenko, A. Joachimiak, and A. F. Yakunin (2008) Polyphosphate-dependent synthesis of ATP and ADP by the family-2 polyphosphate kinases in bacteria. Proc. Natl. Acad. Sci. 105: 17730–17735.

    Article  CAS  Google Scholar 

  25. Iwamoto, S., K. Motomura, Y. Shinoda, M. Urata, J. Kato, N. Takiguchi, H. Ohtake, R. Hirota, and A. Kuroda (2007) Use of an Escherichia coli recombinant producing thermostable polyphosphate kinase as an ATP regenerator to produce fructose 1,6-diphosphate. Appl. Environ. Microbiol. 73: 5676–5678.

    Article  CAS  Google Scholar 

  26. Miller, G. L. (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426–428.

    Article  CAS  Google Scholar 

  27. Scroggins, L. H. (1968) Spectrophotometric microchemical phosphorus determination: A quantitative oxygen flask procedure applicable to problem organophosphorus compounds. Microchem. J. 13: 385–391.

    Article  CAS  Google Scholar 

  28. Jin, L. H., H. J. Um, C. J. Yin, Y. H. Kim, and J.H. Lee (2008) Proteomic analysis of curdlan-producing Agrobacterium sp. in response to pH downshift. J. Biotechnol. 138: 80–87.

    Article  CAS  Google Scholar 

  29. Cristian, V., M. Cecilia, P. Alberto, A. Juan, J. Carlos, and C. Francisco (2010) New structural and functional defects in polyphosphate deficient bacteria: A cellular and proteomic study. BMC Microbiol. 10: 1–7.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaobei Zhan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, L., Wu, J., Liu, J. et al. Enhanced curdlan production in Agrobacterium sp. ATCC 31749 by addition of low-polyphosphates. Biotechnol Bioproc E 16, 34–41 (2011). https://doi.org/10.1007/s12257-010-0145-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-010-0145-5

Keywords

Navigation