Skip to main content

Advertisement

Log in

Development of hemicellulolytic enzyme mixtures for plant biomass deconstruction on target biotechnological applications

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

An essential step in the conversion of lignocellulosic biomass to ethanol and other biorefinery products is conversion of cell wall polysaccharides into fermentable sugars by enzymatic hydrolysis. The objective of the present study was to understand the mode of action of hemicellulolytic enzyme mixtures for pretreated sugarcane bagasse (PSB) deconstruction and wheat arabinoxylan (WA) hydrolysis on target biotechnological applications. In this study, five hemicellulolytic enzymes—two endo-1,4-xylanases (GH10 and GH11), two α-L-arabinofuranosidases (GH51 and GH54), and one β-xylosidase (GH43)—were submitted to combinatorial assays using the experimental design strategy, in order to analyze synergistic and antagonistic effects of enzyme interactions on biomass degradation. The xylooligosaccharides (XOSs) released from hydrolysis were analyzed by capillary electrophoresis and quantified by high-performance anion exchange chromatography with pulsed amperometric detection (HPAEC–PAD). Based on this analysis, it was possible to define which enzymatic combinations favor xylose (X1) or XOS production and thus enable the development of target biotechnological applications. Our results demonstrate that if the objective is X1 production from WA, the best enzymatic combination is GH11 + GH54 + GH43, and for xylobiose (X2) production from WA, it is best to combine GH11 + GH51. However, if the goal is to produce XOS, the five enzymes used in WA hydrolysis are important, but for PSB hydrolysis, only GH11 is sufficient. If the final objective is bioethanol production, GH11 is responsible for hydrolyzing 64.3 % of hemicellulose from PSB. This work provides a basis for further studies on enzymatic mechanisms for XOS production, and the development of more efficient and less expensive enzymatic mixtures, targeting commercially viable lignocellulosic ethanol production and other biorefinery products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alvarez TM, Goldbeck R, Santos RC, Paixão DAA, Gonçalves TA, Franco Cairo JPL, Almeira RF, Pereira IO, Jackson G, Cota J, Buchli F, Citadini AP, Ruller R, Polo CC, Neto MO, Murakami MT, Squina FM (2013) Development and biotechnological application of a novel endoxylanase family GH10 identified from sugarcane soil metagenome. PLoS ONE 8:e70014

  • Banerjee G, Scott-Craig JS, Walton JD (2010a) Improving enzymes for biomass conversion: a basic research perspective. Bioenerg Res 3:82–92

    Article  Google Scholar 

  • Banerjee G, Car S, Scott-Craig JS, Borrusch MS, Walton JD (2010b) Rapid optimization of enzyme mixtures for deconstruction of diverse pretreatment/biomass feedstock combinations. Biotechnol Biofuels 3:22

    Article  PubMed  PubMed Central  Google Scholar 

  • Barr CJ, Mertens JA, Schall CA (2012) Critical cellulase and hemicellulase activities for hydrolysis of ionic liquid pretreated biomass. Bioresource Technol 104:480–485

    Article  CAS  Google Scholar 

  • Beaugrand J, Chambat G, Wong VW, Goubet F, Rémond C, Paës G, Benamrouche S, Debeire P, O'Donohue M, Chabbert B (2004) Impact and efficiency of GH10 and GH11 thermostableendoxylanases on wheat bran and alkali-extractable arabinoxylans. Carbohydr Res 339:2529–2540

    Article  PubMed  CAS  Google Scholar 

  • Billard H, Faraj A, Lopes Ferreira N, Menir S, Heiss-Blanquet S (2012) Optimization of a synthetic mixture composed of major Trichoderma reesei enzymes for the hydrolysis of steam-exploded wheat straw. Biotechnol Biofuels 5:9

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:245–248

    Article  Google Scholar 

  • Bragatto J, Segato F, Cota J, Mello DB, Oliveira MM, Buckeridge MS, Squina SM, Driemeier C (2012) Insights on how the activity of an endoglucanase is affected by physical properties of insoluble celluloses. J Phys Chem B 116:6128–6136

    Article  PubMed  CAS  Google Scholar 

  • Bragatto J, Segato F, Squina FM (2013) Production of xylooligosaccharides (XOS) from delignified sugarcane bagasse by peroxide-HAc process using recombinant xylanase from Bacillus subtilis. Ind Crop Prod 51:123–129

    Article  CAS  Google Scholar 

  • Brasileiro LB, Colodete JL, Piló-Veloso DA (2001) Utilização de perácidos na deslignificação e no branqueamento de polpas celulósicas. Quim Nova 6:819–829

    Article  Google Scholar 

  • Canettieri E, Rocha GJM, de Carvalho JR, Silva JBA (2007) Optimization of acid hydrolysis from the hemicellulosic fraction of the Eucalyptus grandis residue using response surface methodology. Bioresource Technol 98:422–428

    Article  CAS  Google Scholar 

  • Chapla D, Pandit P, Shah A (2012) Production of xylooligosaccharides from corncob xylan by fungal xylanase and their utilization by probiotics. Bioresource Technol 115:215–221

    Article  CAS  Google Scholar 

  • Converse AO (1993) Substrate factors limiting enzymatic hydrolysis. In: Saddler JN (ed) Bioconversion of forest and agricultural plant residues. CAB International, Wallingford, pp 93–106

    Google Scholar 

  • Cota J, Alvarez TM, Citadini AP, Santos CR, de Oliveira NM, Oliveira RR, Pastore GM, Ruller R, Prade RA, Murakami MT, Squina FM (2011) Mode of operation and low-resolution structure of a multi-domain and hyperthermophilicendo-β-1,3-glucanase from Thermotoga petrophila. Biochem Biophys Res Commun 406:590–594

  • Czjzek M, Ben David A, Bravman T, Shoham G, Henrissat B, Shoham Y (2005) Enzyme-substrate complex structures of a GH39 β-xylosidase from Geobacillus stearothermophilus. J Mol Biol 353:838–846

    Article  PubMed  CAS  Google Scholar 

  • Dashtaban M, Schraft H, Qin W (2009) Fungal bioconversion of lignocellulosic residues; opportunities and perspectives. Int J Biol Sci 5:578–595

    Article  Google Scholar 

  • Gao D, Chundawat SPS, Krishnan C, Balan V, Dale BE (2010) Mixture optimization of six core glycosyl hydrolases for maximizingsaccharification of ammonia fiber expansion (AFEX) pretreated corn stover. Bioresource Technol 101:2770–2781

    Article  CAS  Google Scholar 

  • Gao D, Uppugundla N, Chundawat SPS, Yu X, Hermanson S, Gowda K, Brumm P, Mead D, Balan V, Dale BE (2011) Hemicellulases and auxiliary enzymes for improved conversion of lignocellulosic biomass to monosaccharides. Biotechnol Biofuels 4:5

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gonçalves TA, Damásio ARL, Segato F, Alvarez TM, Bragatto J, Brenelli LB, Citadini APS, Murakami MT, Ruller R, Paes Leme AF, Prade RA, Squina FM (2012) Functional characterization and synergic action of fungal xylanase and arabinofuranosidase for production of xylooligosaccharides. Bioresource Technol 119:293–299

  • Gouveia ER, Nascimento RT, Souto-Maior AM, Rocha GJM (2009) Avaliação de metodologia para a caracterização química do bagaço de cana-de-açúcar. Quim Nova 32:1500–1503

    Article  CAS  Google Scholar 

  • Gullon B, Yanez R, Alonso JL, Parajo JC (2010) Production of oligosaccharides and sugars from rye straw: a kinetic approach. Bioresource Technol 101:6676–6684

    Article  CAS  Google Scholar 

  • Gusakov AV, Salanovich TN, Antonov AI, Ustinov BB, Okunev ON, Burlingame R, Emalfarb M, Baez M, Sinitsyn AP (2007) Design of highly efficient cellulase mixtures for enzymatic hydrolysis of cellulose. Biotechnol Bioeng 97:1028–1038

    Article  PubMed  CAS  Google Scholar 

  • Hoffmam ZH, Oliveira LC, Cota J, Alvarez TM, Diogo JA, Neto MO, Citadini APS, Leite VBP, Squina FM, Murakami MT, Ruller R (2013) Characterization of a hexamericexo-acting GH51 a-L-arabinofuranosidase from the mesophilic Bacillus subtilis. Mol Biotechnol 55:260–267

  • Khama L, Bigot YL, Delmas M, Avignon G (2005) Delignification of wheat strawusing a mixture of carboxylic acid and peroxoacids. Ind Crops Prod 21:9–15

    Article  Google Scholar 

  • Kim E, Irwin DC, Walker LP, Wilson DB (1998) Factorial optimization of a six-cellulase mixture. Biotechnol Bioeng 58:494–501

    Article  PubMed  CAS  Google Scholar 

  • Koseki T, Mimasaka N, Hashizume K, Shiono Y, Murayama T (2007) Stimulatory effect of ferulic acid on the production of extracellular xylanolytic enzymes by Aspergillus kawachii. Biosci Biotechnol Biochem 71:1785–1787

    Article  PubMed  CAS  Google Scholar 

  • Kumar R, Wyman CE (2009) Effect of xylanase supplementation of cellulase on digestion of corn stover solids prepared by leading pretreatment technologies. Bioresour Technol 100:4203–4213

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Loo JV, Cummings J, Delzenne N, Englyst H, Franck A, Hopkins M, Kok N, Macfarlane G, Newton D, Quigley M, Roberfroid M, van Vliet T, van den Heuvel E (1999) Functional food properties of nondigestible oligosaccharides: a consensus report from the ENDO Project (DGXII-AIRII-CT94-1095). Brit J Nutr 81:121–132

    PubMed  Google Scholar 

  • Lynd LR, Laser MS, Bransby D, Dale BE, Davison B, Hamilton R, Himmel M, Keller M, McMillan JD, Sheehan J, Wyman CE (2008) How biotech can transform biofuels. Nature Biotechnol 26:169–172

    Article  CAS  Google Scholar 

  • Mandelli F, Franco Cairo JPL, Citadini APS, Büchli F, Alvarez TM, Oliveira RJ, Leite VBP, PaesLeme AF, Mercadante AZ, Squina FM (2013) The characterization of a thermostable and cambialistic superoxide dismutase from Thermus filiformis. Lett Appl Microbiol 57:40–46

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technol 96:673–686

    Article  CAS  Google Scholar 

  • Pauly M, Keegstra K (2008) Cell-wall carbohydrates and their modification as a resource for biofuels. Plant J 54:559–568

    Article  PubMed  CAS  Google Scholar 

  • Rocha GJM, Gonçalves AR, Oliveira BR, Olivares EG, Rossell CEV (2012) Steam explosion pretreatment reproduction and alkaline delignification reactions performed on a pilot scale with sugarcane bagasse for bioethanol production. Ind Crop Prod 35:274–279

    Article  CAS  Google Scholar 

  • Santos CR, Meza AN, Hoffmam ZB, Silva JC, Alvarez TM, Ruller R, Giesel GM, Verli H, Squina FM, Prade RA, Murakami MT (2010) Thermal-induced conformational changes in the product release area drive the enzymatic activity of xylanases 10B: Crystal structure, conformational stability and functional characterization of the xylanase 10B from Thermotoga petrophilaRKU-1. Biochem Bioph Res Co 403:214–219

  • Segato F, Damásio ARL, Gonçalves TA, Lucas RC, Squina FM, Decker SR, Prade RA (2012) High-yield secretion of multiple client proteins in Aspergillus. Enz Microb Technol 51:100–106

    Article  CAS  Google Scholar 

  • Souza AP, Leite DCC, Pattathil S, Hahn MG, Buckeridge MS (2012) Composition and structure of sugarcane cell wall polysaccharides: implications for second-generation bioethanol production. Bioenerg Res 6:564–579

    Article  Google Scholar 

  • Squina FM, Mort AJ, Decker SR, Prade RA (2009) Xylan decomposition by Aspergillus clavatus endo-xylanase. Protein Expr Purif 68:65–71

    Article  PubMed  CAS  Google Scholar 

  • ASTM Standards (1976) Method for absolute calibration of reflectance standards, ASTM E306-71. ASTM International. http://www.astm.org/DATABASE.CART/WITHDRAWN/E306.htm. Accessed 06 June 2014

  • Szijártó N, Siika-aho M, Sontag-Strohm T, Viikari L (2011) Liquefaction of hydrothermally pretreated wheat straw at high-solids content by purified Trichoderma enzymes. Bioresource Technol 102:1968–1974

    Article  Google Scholar 

  • Teixeira CL, Linden CJ, Shroeder AH (2000) Simultaneous saccharification and cofermentation of peracetic acid-pretreated biomass. Appl Biochem Biotechnol 84:111–127

    Article  PubMed  Google Scholar 

  • Tilburn J, Scazzocchio C, Taylor GG, Zabicky-Zissman JH, Lockington RA, Davies RW (1983) Transformation by integration in Aspergillus nidulans. Gene 26:205–221

    Article  PubMed  CAS  Google Scholar 

  • Toshio, NoriyoshiI, ToshiakiK, ToshiyukiN, KunimasaK (1990) Production of xylobiose. Japanese Patent JP 2119790

  • Van Dyk JS, Pletschke BI (2012) A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes-factors affecting enzymes, conversion and synergy. Biotechnol Adv 30:1458–1480

    Article  PubMed  Google Scholar 

  • Vardakou M, DumonC MJM, Christakopoulos P, Weiner DP, Juge N, Lewis RJ, Gilbert HJ, Flint JE (2008) Understanding the structural basis for substrate and inhibitor recognition in eukaryotic GH11 xylanases. J Mol Biol 375:1293–1305

    Article  PubMed  CAS  Google Scholar 

  • Vasconcelos SM, Santos AMP, Rocha GJM, Souto-Maior AM (2013) Diluted phosphoric acid pretreatment for production of fermentable sugars in a sugarcane-based biorefinery. Bioresource Technol 135:46–52

    Article  Google Scholar 

  • Vázquez MJ, Alonso JL, Domínguez H, Parajó JC (2000) Xylooligosaccharides: manufacture and applications. Trends Food Sci Tech 11:387–393

    Article  Google Scholar 

  • Winkelhausen E, Kuzmanova S (1998) Microbial conversion of D-xylose to xylitol. J Ferment Bioeng 86:1–14

    Article  CAS  Google Scholar 

  • Yang B, Wyman CH (2004) Effect of xylan and lignin removal by batch and flow through pretreatment on the enzymatic digestibility of corn stover cellulose. Biotechnol Bioeng 86:88–95

    Article  PubMed  CAS  Google Scholar 

  • Yang B, Boussaid A, Mansfield SD, Gregg DJ, Saddler JN (2002) Fast and efficient alkaline peroxide treatment to enhance the enzymatic digestibility of steam-exploded softwood substrates. Biotechnol Bioeng 77:678–684

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to FAPESP (The State of São Paulo Research Foundation) for its financial support (2012/18859-5). ARLD is a FAPESP fellow (2013/18910-3). This work was also financially supported by FAPESP 2008/58037-9 and by CNPq 475022/2011-4 and 310177/2011-1 (FMS). We would like to thank the entire team of the molecular biology laboratory (CTBE/CNPEM), in particular the technical support of Rodrigo F. Almeida, also Thabata M. Alvarez and Zaira B. Hoffmam for cloning the GH10 and GH51 enzymes, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio M. Squina.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 453 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goldbeck, R., Damásio, A.R.L., Gonçalves, T.A. et al. Development of hemicellulolytic enzyme mixtures for plant biomass deconstruction on target biotechnological applications. Appl Microbiol Biotechnol 98, 8513–8525 (2014). https://doi.org/10.1007/s00253-014-5946-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5946-6

Keywords

Navigation