Skip to main content
Log in

Production of protocatechuic acid by Corynebacterium glutamicum expressing chorismate-pyruvate lyase from Escherichia coli

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Protocatechuic acid (3,4-dihydroxybenzoic acid; PCA) serves as a building block for polymers and pharmaceuticals. In this study, the biosynthetic pathway for PCA from glucose was engineered in Corynebacterium glutamicum. The pathway to PCA-employed elements of the chorismate pathway by using chorismate-pyruvate lyase (CPL) and 4-hydroxybenzoate hydroxylase (4-HBA hydroxylase). As C. glutamicum has the potential to synthesize the aromatic amino acid intermediate chorismate and possesses 4-HBA hydroxylase, we focused on expressing Escherichia coli CPL in a phenylalanine-producing strain of C. glutamicum ATCC21420. To secrete PCA, the gene (ubiC) encoding CPL from E. coli was expressed in C. glutamicum ATCC 21420 (strain F(UbiC)). The formation of 28.8 mg/L of extracellular 4-HBA (36 h) and 213 ± 29 mg/L of extracellular PCA (80 h) was obtained by the C. glutamicum strain F(UbiC) from glucose. The strain ATCC21420 was also found to produce extracellular PCA. PCA fermentation was performed using C. glutamicum strain F(UbiC) in a bioreactor at the optimized pH of 7.5. C. glutamicum F(UbiC) produced 615 ± 2.1 mg/L of PCA from 50 g/L of glucose after 72 h. Further, fed-batch fermentation of PCA by C. glutamicum F(UbiC) was performed with feedings of glucose every 24 h. The maximum production of PCA (1140.0 ± 11.6 mg/L) was achieved when 117.0 g/L of glucose was added over 96 h of fed-batch fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bentley R (1990) The shikimate pathway—a metabolic tree with many branches. Crit Rev Biochem Mol Biol 25:307–384

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Brinkrolf K, Brune I, Tauch A (2006) Transcriptional regulation of catabolic pathways for aromatic compounds in Corynebacterium glutamicum. Genet Mol Res 5:773–789

    PubMed  Google Scholar 

  • Carrott PJM, Marques LM, Carrott MMLR (2010) Characterisation of the porosity of polymer and carbon aerogels containing Fe, Ni or Cu prepared from 2,4-dihydroxybenzoic acid by n-nonane pre-adsorption and density functional theory. Microporous Mesoporous Mater 131:75–81

    Article  CAS  Google Scholar 

  • Carrott PJM, Marques LM, Carrott MMLR (2012) Core-shell polymer aerogels prepared by co-polymerisation of 2,4-dihydroxybenzoic acid, resorcinol and formaldehyde. Microporous Mesoporous Mater 158:170–174

    Article  CAS  Google Scholar 

  • Fujita T, Nguyen HD, Ito T, Zhou S, Osada L, Tateyama S, Kaneko T, Takaya N (2013) Microbial monomers custom-synthesized to build true bio-derived aromatic polymers. Appl Microbiol Biotechnol 97:8887–8894

    Article  PubMed  CAS  Google Scholar 

  • Garner BL, Arceneaux JE, Byers BR (2004) Temperature control of a 3,4-dihydroxybenzoate (protocatechuate)-based siderophore in Bacillus anthracis. Curr Microbiol 49:89–94

    PubMed  CAS  Google Scholar 

  • George M (2001) Burgey’s manual of systematic bacteriology, 2nd edn. Springer, New York

    Google Scholar 

  • Hasunuma T, Okazaki F, Okai N, Hara KY, Ishii J, Kondo A (2013) A review of enzymes and microbes for lignocellulosic biorefinery and the possibility of their application to consolidated bioprocessing technology. Bioresour Technol 135:513–522

    Article  PubMed  CAS  Google Scholar 

  • Hermann T (2003) Industrial production of amino acids by Coryneform bacteria. J Biotechnol 104:155–172

    Article  PubMed  CAS  Google Scholar 

  • Huang Y, Zhao KX, Shen XH, Jiang CY, Liu SJ (2008) Genetic and biochemical characterization of a 4-hydroxybenzoate hydroxylase from Corynebacterium glutamicum. Appl Microbiol Biotechnol 78:75–83

    Article  PubMed  CAS  Google Scholar 

  • Kakkar S, Bais S (2014) A review on protocatechuic acid and its pharmacological potential. ISRN Pharmacol 2014: Article ID 952943, 1–9. doi:10.1155/2014/952943

  • Kawai Y, Noda S, Ogino C, Takeshima Y, Okai N, Tanaka T, Kondo A (2013) p-hydroxycinnamic acid production directly from cellulose using endoglucanase- and tyrosine ammonia lyase-expressing Streptomyces lividans. Microb Cell Factories 12:45

    Article  CAS  Google Scholar 

  • Kurusu Y, Kainuma M, Inui M, Satoh Y, Yukawa H (1990) Electroporation-transformation system for Coryneform bacteria by auxotrophic complementation. Agric Biol Chem 54:443–447

    Article  PubMed  CAS  Google Scholar 

  • Leuchtenberger W, Huthmacher K, Drauz K (2005) Biotechnological production of amino acids and derivatives: current status and prospects. Appl Microbiol Biotechnol 69:1–8

    Article  PubMed  CAS  Google Scholar 

  • Liebl W, Klamer R, Schleifer KH (1989) Requirement of chelating compounds for the growth of Corynebacterium glutamicum in synthetic media. Appl Microbiol Biotechnol 32:205–210

    Article  CAS  Google Scholar 

  • Masella R, Santangelo C, D’Archivio M, Li Volti G, Giovannini C, Galvano F (2012) Protocatechuic acid and human disease prevention: biological activities and molecular mechanisms. Curr Med Chem 19:2901–2917

    Article  PubMed  CAS  Google Scholar 

  • Merkens H, Beckers G, Wirtz A, Burkovski A (2005) Vanillate metabolism in Corynebacterium glutamicum. Curr Microbiol 51:59–65

    Article  PubMed  CAS  Google Scholar 

  • Nichols BP, Green JM (1992) Cloning and sequencing of Escherichia coli ubiC and purification of chorismate lyase. J Bacteriol 174:5309–5316

    PubMed  CAS  PubMed Central  Google Scholar 

  • Noda S, Miyazaki T, Miyoshi T, Miyake M, Okai N, Tanaka T, Ogino C, Kondo A (2011) Cinnamic acid production using Streptomyces lividans expressing phenylalanine ammonia lyase. J Ind Microbiol Biotechnol 38:643–648

    Article  PubMed  CAS  Google Scholar 

  • OECD (2009) The bioeconomy to 2030. Organization of economic co-operation and development.

  • Okai N, Takahashi C, Hatada K, Ogino C, Kondo A (2014) Disruption of pknG enhances production of gamma-aminobutyric acid by Corynebacterium glutamicum expressing glutamate decarboxylase. AMB Express 4:20

    Article  PubMed  PubMed Central  Google Scholar 

  • Okino S, Inui M, Yukawa H (2005) Production of organic acids by Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol 68:475–480

    Article  PubMed  CAS  Google Scholar 

  • Okino S, Noburyu R, Suda M, Jojima T, Inui M, Yukawa H (2008a) An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain. Appl Microbiol Biotechnol 81:459–464

    Article  PubMed  CAS  Google Scholar 

  • Okino S, Suda M, Fujikura K, Inui M, Yukawa H (2008b) Production of D-lactic acid by Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol 78:449–454

    Article  PubMed  CAS  Google Scholar 

  • Okumura S, Otsuka S, Yamanoi A, Yoshinaga F, Honda T, Kubota K, Tsuchida T (1972) Method for producing phenylalanine by fermentation. US Patent 3,660,235.

  • Schneider J, Wendisch VF (2010) Putrescine production by engineered Corynebacterium glutamicum. Appl Microbiol Biotechnol 88:859–868

    Article  PubMed  CAS  Google Scholar 

  • Semaming Y, Pannengpetch P, Chattipakorn SC, Chattipakorn N (2015) Pharmacological properties of protocatechuic acid and its potential roles as complementary medicine. Evid Based Complement Alternat Med 2015: Article ID 593902, 1-11. doi:10.1155/2015/593902

  • Shen X, Liu S (2005) Key enzymes of the protocatechuate branch of the beta-ketoadipate pathway for aromatic degradation in Corynebacterium glutamicum. Sci China C Life Sci 48:241–249

    PubMed  CAS  Google Scholar 

  • Siebert M, Severin K, Heide L (1994) Formation of 4-hydroxybenzoate in Escherichia coli: characterization of the ubiC gene and its encoded enzyme chorismate pyruvate-lyase. Microbiology 140(Pt 4):897–904

    Article  PubMed  CAS  Google Scholar 

  • Stadthagen G, Kordulakova J, Griffin R, Constant P, Bottova I, Barilone N, Gicquel B, Daffe M, Jackson M (2005) p-hydroxybenzoic acid synthesis in Mycobacterium tuberculosis. J Biol Chem 280:40699–40706

    Article  PubMed  CAS  Google Scholar 

  • Sun JJ, Zhou DM, Fang HQ, Chen HY (1998) The electrochemical copolymerization of 3,4-dihydroxybenzoic acid and aniline at microdisk gold electrode and its amperometric determination for ascorbic acid. Talanta 45:851–856

    Article  PubMed  CAS  Google Scholar 

  • Takahashi C, Shirakawa J, Tsuchidate T, Okai N, Hatada K, Nakayama H, Tateno T, Ogino C, Kondo A (2012) Robust production of gamma-amino butyric acid using recombinant Corynebacterium glutamicum expressing glutamate decarboxylase from Escherichia coli. Enzym Microb Technol 51:171–176

    Article  CAS  Google Scholar 

  • Tateno T, Fukuda H, Kondo A (2007) Direct production of l-lysine from raw corn starch by Corynebacterium glutamicum secreting Streptococcus bovis alpha-amylase using cspB promoter and signal sequence. Appl Microbiol Biotechnol 77:533–541

    Article  PubMed  CAS  Google Scholar 

  • Tateno T, Okada Y, Tsuchidate T, Tanaka T, Fukuda H, Kondo A (2009) Direct production of cadaverine from soluble starch using Corynebacterium glutamicum coexpressing alpha-amylase and lysine decarboxylase. Appl Microbiol Biotechnol 82:115–121

    Article  PubMed  CAS  Google Scholar 

  • Tsuchidate T, Tateno T, Okai N, Tanaka T, Ogino C, Kondo A (2011) Glutamate production from beta-glucan using endoglucanase-secreting Corynebacterium glutamicum. Appl Microbiol Biotechnol 90:895–901

    Article  PubMed  CAS  Google Scholar 

  • Unthan S, Grunberger A, van Ooyen J, Gatgens J, Heinrich J, Paczia N, Wiechert W, Kohlheyer D, Noack S (2014) Beyond growth rate 0.6: what drives Corynebacterium glutamicum to higher growth rates in defined medium. Biotechnol Bioeng 111:359–371

    Article  PubMed  CAS  Google Scholar 

  • US Department of Energy (2004) Top value added chemicals from biomass, volume I - results of screening for potential candidates from sugars and synthesis gas. T.Werpy and G. Petersen. the Pacific Northwest National Laboratory (PNNL).

  • Weber C, Bruckner C, Weinreb S, Lehr C, Essl C, Boles E (2012) Biosynthesis of cis, cis-muconic acid and its aromatic precursors, catechol and protocatechuic acid, from renewable feedstocks by Saccharomyces cerevisiae. Appl Environ Microbiol 78:8421–8430

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Williams KM, Martin WE, Smith J, Williams BS, Garner BL (2012) Production of protocatechuic acid in Bacillus thuringiensis ATCC33679. Int J Mol Sci 13:3765–3772

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wilson MK, Abergel RJ, Raymond KN, Arceneaux JE, Byers BR (2006) Siderophores of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis. Biochem Biophys Res Commun 348:320–325

    Article  PubMed  CAS  Google Scholar 

  • Zhou L, Huang TW, Wang JY, Sun S, Chen G, Poplawsky A, He YW (2013a) The rice bacterial pathogen Xanthomonas oryzae pv. oryzae produces 3-hydroxybenzoic acid and 4-hydroxybenzoic acid via xanB2 for use in xanthomonadin, ubiquinone, and exopolysaccharide biosynthesis. Mol Plant Microbe Interact 26:1239–1248

    Article  PubMed  CAS  Google Scholar 

  • Zhou L, Wang JY, Wu J, Wang J, Poplawsky A, Lin S, Zhu B, Chang C, Zhou T, Zhang LH, He YW (2013b) The diffusible factor synthase XanB2 is a bifunctional chorismatase that links the shikimate pathway to ubiquinone and xanthomonadins biosynthetic pathways. Mol Microbiol 87:80–93

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by Special Coordination Funds for Promoting Science and Technology, Creation of Innovation Centers for Advanced Interdisciplinary Research Areas (Innovative Bioproduction Kobe) from the Ministry of Education, Culture, Sports, Science and Technology of Japan. We appreciate help from Drs. Fumio Matsuda, Fumiyoshi Okazaki, Satoshi Wakai and Shimpei Aikawa for discussions regarding this work. We thank Ms. Michiru Miyake for technical assistance.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihiko Kondo.

Ethics declarations

Compliance with ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 272 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okai, N., Miyoshi, T., Takeshima, Y. et al. Production of protocatechuic acid by Corynebacterium glutamicum expressing chorismate-pyruvate lyase from Escherichia coli . Appl Microbiol Biotechnol 100, 135–145 (2016). https://doi.org/10.1007/s00253-015-6976-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6976-4

Keywords

Navigation