Skip to main content
Log in

Cellulase recycling in biorefineries—is it possible?

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

On a near future, bio-based economy will assume a key role in our lives. Lignocellulosic materials (e.g., agroforestry residues, industrial/solid wastes) represent a cheaper and environmentally friendly option to fossil fuels. Indeed, following suitable processing, they can be metabolized by different microorganisms to produce a wide range of compounds currently obtained by chemical synthesis. However, due to the recalcitrant nature of these materials, they cannot be directly used by microorganisms, the conversion of polysaccharides into simpler sugars being thus required. This conversion, which is usually undertaken enzymatically, represents a significant part on the final cost of the process. This fact has driven intense efforts on the reduction of the enzyme cost following different strategies. Here, we describe the fundamentals of the enzyme recycling technology, more specifically, cellulase recycling. We focus on the main strategies available for the recovery of both the liquid- and solid-bound enzyme fractions and discuss the relevant operational parameters (e.g., composition, temperature, additives, and pH). Although the efforts from the industry and enzyme suppliers are primarily oriented toward the development of enzyme cocktails able to quickly and effectively process biomass, it seems clear by now that enzyme recycling is technically possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aden A, Foust T (2009) Technoeconomic analysis of the dilute sulfuric acid and enzymatic hydrolysis process for the conversion of corn stover to ethanol. Cellulose 16:535–545. doi:10.1007/s10570-009-9327-8

    Article  CAS  Google Scholar 

  • Adsul MG, Singhvi MS, Gaikaiwari SA, Gokhale DV (2011) Development of biocatalysts for production of commodity chemicals from lignocellulosic biomass. Bioresour Technol 102(6):4304–4312. doi:10.1016/j.biortech.2011.01.002

    Article  CAS  PubMed  Google Scholar 

  • Almeida JRM, Bertilsson M, Gorwa-Grauslund MF, Gorsich S, Liden G (2009) Metabolic effects of furaldehydes and impacts on biotechnological processes. Appl Microbiol Biotechnol 82:625–638. doi:10.1007/s00253-009-1875-1

    Article  CAS  PubMed  Google Scholar 

  • Arantes V, Saddler JN (2010) Access to cellulose limits the efficiency of enzymatic hydrolysis: the role of amorphogenesis. Biotechnol Biofuels 3:4. doi:10.1186/1754-6834-3-4

    Article  PubMed Central  PubMed  Google Scholar 

  • Barsberg S, Selig MJ, Felby C (2013) Impact of lignins isolated from pretreated lignocelluloses on enzymatic cellulose saccharification. Biotechnol Lett 35(2):189–195. doi:10.1007/s10529-012-1061-x

    Article  CAS  PubMed  Google Scholar 

  • Bommarius AS, Katona A, Cheben SE, Patel AS, Ragauskas AJ, Knudson K, Pu Y (2008) Cellulase kinetics as a function of cellulose pretreatment. Metab Eng 6:370–381. doi:10.1016/j.ymben.2008.06.008

    Article  Google Scholar 

  • Boraston A, Bray M, Burn E, Creagh AL, Gilkes N, Guarna M, Jervis E, Johnson P, Kormos J, McIntosh L, McLean B, Sandercock L, Tomme P, Haynes C, Warren A, Kilburn D (1998) The structure and function of cellulose binding domains. In: Claeyssen M, Nerinkx W, Piens K (eds) Carbohydrate from Trichoderma reesei and other microorganisms. The Royal Society of Chemistry, Cambridge, United Kingdom, pp 139–146

    Google Scholar 

  • Chen G, Song W, Qi B, Lu J, Wan Y (2013) Recycling cellulase from enzymatic hydrolyzate of acid treated wheat straw by electroultrafiltration. Bioresour Technol 144:186–193. doi:10.1016/j.biortech.2013.06.089

    Article  CAS  PubMed  Google Scholar 

  • Demirabas A (2008) Products from lignocellulosic materials via degradation process. Energy Sources A 30(1):27–37. doi:10.1080/00908310600626705

    Article  Google Scholar 

  • Desphande MV, Erikson K-E (1984) Reutilization of enzymes for saccharification of lignocellulosic materials. Enzym Microb Technol 6:338–340. doi:10.1016/0141-0229(84)90045-0

    Article  Google Scholar 

  • Du R, Su R, Li X, Tantai X, Liu Z, Yang J, Qi W, He Z (2012) Controlled adsorption of cellulase onto pretreated corncob by pH adjustment. Cellulose 19:371–380. doi:10.1007/s10570-012-9653-0

    Article  CAS  Google Scholar 

  • Eckard AD, Muthukumarappan K, Gibbons W (2013) Enhanced bioethanol production from pretreated corn stover via multi-positive effect of casein micelles. Bioresour Technol 135:93–102. doi:10.1016/j.biortech.2012.07.100

    Article  CAS  PubMed  Google Scholar 

  • Eriksson T, Börjesson J, Tjerneld F (2002) Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enzyme Microb Technol 31:353–364. doi:10.1016/S0141-0229(02)00134-5

    Article  CAS  Google Scholar 

  • Gilkes NR, Henrissat B, Kilburn DG, Miller RC Jr, Warren RAJ (1991) Domains in microbial β-1,4-glycanases: sequence conservation, function, and enzyme families. Microbiol Rev 55:303–315

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gourlay K, Arantes V, Saddler JN (2012) Use of substructure-specific carbohydrate binding modules to track changes in cellulose accessibility and surface morphology during the amorphogenesis step of enzymatic hydrolysis. Biotechnol Biofuels 5:51. doi:10.1186/1754-6834-5-51

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gupta A, Verma JP (2015) Sustainable bio-ethanol production from agro-residues: a review. Renew Sust Energ Rev 41:550–567. doi:10.1016/j.rser.2014.08.032

    Article  CAS  Google Scholar 

  • Hall M, Bansal P, Lee JH, Realff MJ, Bommarius AS (2010) Cellulose crystallinity - a key predictor of the enzymatic hydrolysis rate. FEBS J277:1571–1582. doi:10.1111/j.1742-4658.2010.07585.x

    Article  Google Scholar 

  • Hayes DJM (2013) Second-generation biofuels: why they are taking so long. WIREs Energy Environ 2:304–334. doi:10.1002/wene.59

    Article  Google Scholar 

  • Himmel ME, Ding S, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 5813:804–807. doi:10.1126/science.1137016

    Article  Google Scholar 

  • Horn SJ, Vaaje-Kolstad G, Westereng B, Eijsink VG (2012) Novel enzymes for the degradation of cellulose. Biotechnol Biofuels 5(1):45. doi:10.1186/1754-6834-5-45

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ishihara M, Uemura S, Hayashi N, Jellison J, Shimizu K (1991) Adsorption and desorption of cellulase components during enzymatic hydrolysis of steamed shirakamba (B etula platyphylla Skatchev) wood. J Ferment Bioeng 72:96–100. doi:10.1016/0922-338X(91)90316-9

  • Jorgensen H, Eriksson T, Borjesson J, Tjerneld F, Olsson L (2003) Purification and characterization of five cellulases and one xylanase from Penicillium brasilianum IBT 20888. Enzyme Microb Technol 32:851–861. doi:10.1016/S0141-0229(03)00056-5

    Article  CAS  Google Scholar 

  • Klein-Marcusschamer D, Oleskowicz-Popiel P, Simmons BA, Blanch WH (2012) The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnol Bioeng 109:1083–1089. doi:10.1002/bit.24370

    Article  Google Scholar 

  • Klyosov AA, Mitkevich OV, Sinitsyn AP (1986) Role of the activity and adsorption of cellulases in the efficiency of the enzymatic hydrolysis of amorphous and crystalline cellulose. Biochemistry 25(3):540–542. doi:10.1021/bi00351a003

    Article  CAS  Google Scholar 

  • Kumar D, Murthy GS (2013) Stochastic molecular model of enzymatic hydrolysis of cellulose for ethanol production. Biotechnol Biofuels 6(1):63. doi:10.1186/1754-6834-6-63

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kumar R, Singh S, Singh OV (2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol 35(5):377–391. doi:10.1007/s10295-008-0327-8

    Article  CAS  PubMed  Google Scholar 

  • Kumar L, Arantes V, Chandra R, Saddler J (2012) The lignin present in steam pretreated softwood binds enzymes and limits cellulose accessibility. Bioresour Technol 103:201–208. doi:10.1016/j.biortech.2011.09.091

    Article  CAS  PubMed  Google Scholar 

  • Lee SB, Shin HS, Ryu DD, Mandels M (1982) Adsorption of cellulase on cellulose: effect of physicochemical properties of cellulose on adsorption and rate of hydrolysis. Biotechnol Bioeng 24(10):2137–2153. doi:10.1002/bit.260241003

    Article  CAS  PubMed  Google Scholar 

  • Lee D, Yu AHC, Saddler JN (1995) Evaluation of cellulase recycling strategies for the hydrolysis of lignocellulosic substrates. Biotechnol Bioeng 45:328–336. doi:10.1002/bit.260450407

    Article  CAS  PubMed  Google Scholar 

  • Lindedam J, Haven M, Chylenski P, Jørgensen H, Felby C (2013) Recycling cellulases for cellulosic ethanol production at industrial relevant conditions: potential and temperature dependency at high solid processes. Bioresour Technol 148:180–188. doi:10.1016/j.biortech.2013.08.130

    Article  CAS  PubMed  Google Scholar 

  • Lu YP, Yang B, Gregg D, Saddler JN, Mansfield SD (2002) Cellulase adsorption and an evaluation of enzyme recycle during hydrolysis of steam-exploded softwood residues. Appl Biochem Biotechnol 98–100:641–654. doi:10.1385/ABAB:98-100:1-9:641

    Article  PubMed  Google Scholar 

  • Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66(3):506–577. doi:10.1128/MMBR.66.3.506–577.2002

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maheshwari R, Bharadwaj G, Bhat MK (2000) Thermophilic fungi: their physiology and enzymes. Microbiol Mol Biol Rev 64(3):461–488. doi:10.1128/MMBR. 64.3.461-488.2000

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE, Chapman J, Chertkov O, Coutinho PM, Cullen D, Danchin EG, Grigoriev IV, Harris P, Jackson M, Kubicek CP, Han CS, Ho I, Larrondo LF, de Leon AL, Magnuson JK, Merino S, Misra M, Nelson B, Putnam N, Robbertse B, Salamov AA, Schmoll M, Terry A, Thayer N, Westerholm-Parvinen A, Schoch CL, Yao J, Barabote R, Nelson MA, Detter C, Bruce D, Kuske CR, Xie G, Richardson P, Rokhsar DS, Lucas SM, Rubin EM, Dunn-Coleman N, Ward M, Brettin TS (2008) Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat Biotechnol 26(5):553–560. doi:10.1038/nbt1403

    Article  CAS  PubMed  Google Scholar 

  • McLean BW, Boraston AB, Brouwer D, Sanaie N, Fyfe CA, Warren RA, Kilburn DG, Haynes CA (2002) Carbohydrate-binding modules recognize fine substructures of cellulose. J Biol Chem 277:50245–50254. doi:10.1074/jbc.M204433200

    Article  CAS  PubMed  Google Scholar 

  • Mittal A, Katahira R, Himmel ME, Johnson DK (2011) Effects of alkaline or liquid-ammonia treatment on crystalline cellulose: changes in crystalline structure and effects on enzymatic digestibility. Biotechnol Biofuels 4:41. doi:10.1186/1754-6834-4-41

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Otter DE, Munro PA, Scott GK, Geddes R (1984) Elution of Trichoderma reesei cellulase from cellulose by pH adjustment with sodium hydroxide. Biotechnol Lett 6:369–374. doi:10.1007/BF00138007

    Article  CAS  Google Scholar 

  • Otter DE, Munro PA, Scott GK, Geddes R (1989) Desorption of Trichoderma reesei cellulose from cellulose by a range of desorbents. Biotechnol Bioeng 34:291–298. doi:10.1002/bit.260340303

    Article  CAS  PubMed  Google Scholar 

  • Ouyang J, Liu B, Zhang M, Zheng Z, Yu H (2013) Enzymatic hydrolysis, adsorption, and recycling during hydrolysis of bagasse sulfite pulp. Bioresour Technol 146:288–293. doi:10.1016/j.biortech.2013.07.019

    Article  CAS  PubMed  Google Scholar 

  • Pakarinen A, Haven MØ, Djajadi DT, Várnai A, Puranen T, Viikari L (2014) Cellulases without carbohydrate-binding modules in high consistency ethanol production process. Biotechnol Biofuels 7:27. doi:10.1186/1754-6834-7-27

    Article  PubMed Central  PubMed  Google Scholar 

  • Palonen H, Tenkanen M, Linder M (1999) Dynamic interaction of Trichoderma reesei cellobiohydrolases Cel6A and Cel7A and cellulose at equilibrium and during hydrolysis. Appl Environ Microbiol 65:5229–5233

  • Pan X, Xie D, Gilkes N, Gregg DJ, Saddler JN (2005) Strategies to enhance the enzymatic hydrolysis of pretreated softwood with high residual lignin content. Appl Biochem Biotechnol 121–124:1069–1079. doi:10.1385/ABAB:124:1-3:1069

    Article  PubMed  Google Scholar 

  • Pereira FB, Romaní A, Ruiz HA, Teixeira JA, Domingues L (2014) Industrial robust yeast isolates with great potential for fermentation of lignocellulosic biomass. BioresourTechnol 161:192–199. doi:10.1016/j.biortech.2014.03.043

    Article  CAS  Google Scholar 

  • Pribowo A, Arantes V, Saddler JN (2012) The adsorption and enzyme activity profiles of specific Trichoderma reesei cellulose/xylanase components when hydrolyzing steam pretreated corn stover. Enzyme Microb Technol 50:195–203. doi:10.1016/j.enzmictec.2011.12.004

    Article  CAS  PubMed  Google Scholar 

  • Qi B, Chen X, Su Y, Wan Y (2011) Enzyme adsorption and recycling during hydrolysis of wheat straw lignocelluloses. Bioresour Technol 102:2881–2889. doi:10.1016/j.biortech.2010.10.092

    Article  CAS  PubMed  Google Scholar 

  • Qi B, Luo J, Chen G, Chen X, Wan Y (2012) Application of ultrafiltration and nanofiltration for recycling cellulase and concentrating glucose from enzymatic hydrolyzate of steam exploded wheat straw. Bioresour Technol 104:466–472. doi:10.1016/j.biortech.2011.10.049

    Article  CAS  PubMed  Google Scholar 

  • Reese RT (1976) History of the cellulase program at the U.S. Army Natick development center. Biotechnol Bioeng Symp 6:9–20

    CAS  PubMed  Google Scholar 

  • Rodrigues AC, Leitão AF, Moreira S, Felby C, Gama M (2012) Recycling of cellulases in lignocellulosic hydrolysates using alkaline elution. Bioresour Technol 110:526–533. doi:10.1016/j.biortech.2012.01.140

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues AC, Felby C, Gama M (2014) Cellulase stability, adsorption/desorption profiles and recycling during successive cycles of hydrolysis and fermentation of wheat straw. Bioresour Technol 156:163–169. doi:10.1016/j.biortech.2014.01.019

    Article  CAS  PubMed  Google Scholar 

  • Romaní A, Pereira F, Johansson B, Domingues L (2015) Metabolic engineering of S accharomyces cerevisiae ethanol strains PE-2 and CAT-1 for efficient lignocellulosic fermentation. Bioresour Technol 179:150–158. doi:10.1016/j.biortech.2014.12.020

  • Rosales-Calderon O, Trajano HL, Duff SJB (2014) Stability of commercial glucanase and β-glucosidase preparations under hydrolysis conditions. Peer J 2:e402. doi:10.7717/peerj.402

    Article  PubMed Central  PubMed  Google Scholar 

  • Sánchez OJ, Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 99(13):5270–5295. doi:10.1016/j.biortech.2007.11.013

    Article  PubMed  Google Scholar 

  • Schmaier AH, Silver L, Adams AL, Fischer GC, Munoz PC, Vroman L, Colman RW (1984) The effect of high molecular weight kininogen on surface-adsorbed fibrinogen. Thromb Res 33:51–67. doi:10.1016/0049-3848(84)90154-3

    Article  CAS  PubMed  Google Scholar 

  • Segato F, Damásio ARL, de Lucas RC, Squina FM, Prade RA (2014) Genomics review of holocellulose deconstruction by A spergilli. Microbiol Mol Biol Rev 78(4):588–613. doi:10.1128/MMBR. 00019-14

  • Seiboth B, Ivanova C, Seidl-Seiboth V (2011) Trichoderma reesei: a fungal enzyme producer for cellulosic biofuels. In: Bernardes MAS (ed) Biofuel Production-Recent Developments and Prospects, In Tech, pp 309-340

  • Seo D-J, Fujita H, Sakoda A (2011) Effects of a non-ionic surfactant, Tween 20, on adsorption/desorption of saccharification enzymes onto/from lignocelluloses and saccharification rate. Adsorption 17:813–822. doi:10.1007/s10450-011-9340-8

    Article  CAS  Google Scholar 

  • Shang Y, Su R, Huang R, Yang Y, Qi W, Li Q, He Z (2014) Recycling cellulases by pH-triggered adsorption-desorption during the enzymatic hydrolysis of lignocellulosic biomass. Appl Microbiol Biotechnol 98(12):5765–5774. doi:10.1007/s00253-014-5761-0

    Article  CAS  PubMed  Google Scholar 

  • Sipos B, Dienes D, Schleicher Á, Perazzini R, Crestini C, Siika-aho M, Réczey K (2010) Hydrolysis efficiency and enzyme adsorption on steam-pretreated spruce in the presence of poly(ethylene glycol). Enzyme Microb Technol 47:84–90. doi:10.1016/j.enzmictec.2010.05.010

  • Sipponen MH, Pihlajaniemi V, PastinenO LS (2014) Reduction of surface area of lignin improves enzymatic hydrolysis of cellulose from hydrothermally pretreated wheat straw. RSC Adv 4:36591–36596. doi:10.1039/C4RA06926A

    Article  CAS  Google Scholar 

  • Široký J, Benians TAS, Russell SJ, Bechtold T, Knox JP, Blackburn RS (2012) Analysis of crystallinity changes in cellulose II polymers using carbohydrate-binding modules. Carbohydr Polym 89:213–221. doi:10.1016/j.biortech.2014.01.027

    Article  PubMed  Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83(1):1–11. doi:10.1016/S0960-8524(01)00212-7

    Article  CAS  PubMed  Google Scholar 

  • Suominen PL, Mantyla AL, Karhunen T, Hakola S, Nevalainen KMH (1993) High frequency one-step gene replacement in Trichoderma reesei. II. Effects of deletions of individual cellulase genes. Mol Gen Genet 241:523–530. doi:10.1007/BF00279894

    Article  CAS  PubMed  Google Scholar 

  • Tu M, Saddler JN (2010) Potential enzyme cost reduction with the addition of surfactant during the hydrolysis of pretreated softwood. Appl Biochem Biotechnol 161:274–287. doi:10.1007/s12010-009-8869-4

    Article  CAS  PubMed  Google Scholar 

  • Tu M, Chandra RP, Saddler JN (2007a) Evaluating the distribution of cellulases and the recycling of free cellulases during the hydrolysis of lignocellulosic substrates. Biotechnol Progr 23:398–406. doi:10.1021/bp060354f

    Article  CAS  Google Scholar 

  • Tu M, Chandra RP, Saddler JN (2007b) Recycling cellulases during the hydrolysis of steam exploded and ethanol pretreated lodgepole pine. Biotechnol Progr 23:1130–1137. doi:10.1021/bp070129d

    Article  CAS  Google Scholar 

  • Tu M, Zhang X, Paice M, MacFarlane P, Saddler JN (2009) The potential of enzyme recycling during the hydrolysis of a mixed softwood feedstock. Bioresour Technol 100:6407–6415. doi:10.1016/j.biortech.2009.06.108

    Article  CAS  PubMed  Google Scholar 

  • Viikari L, Alapuranen M, Puranen T, Vehmaanperä J, Siika-Aho M (2007) Thermostable enzymes in lignocellulose hydrolysis. Adv Biochem Eng Biotechnol 108:121–45. doi:10.1007/10_2007_065

    CAS  PubMed  Google Scholar 

  • Waeonukul R, Kosugi A, Prawitwong P, Deng L, Tachaapaikoon C, Pason P, Ratanakhanokchai K, Saito M, Mori Y (2013) Novel cellulase recycling method using a combination of Clostridium thermocellum cellulosomes and Thermoanaerobacter brockii β-glucosidase. Bioresour Technol 130:424–430. doi:10.1016/j.biortech.2012.12.059

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Zhu Y, Du J, Yang Y, Jin Y (2015) Influence of lignin addition on the enzymatic digestibility of pretreated lignocellulosic biomasses. Bioresour Technol 181:7–12. doi:10.1016/j.biortech.2015.01.026

    Article  CAS  PubMed  Google Scholar 

  • Yang B, Wyman CE (2006) BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates. Biotechnol Bioeng 94:611–617. doi:10.1002/bit.20750

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Zhang X, Yong Q, Yu S (2010) Three-stage hydrolysis to enhance enzymatic saccharification of steam-exploded corn stover. Bioresour Technol 101:4930–4935. doi:10.1016/j.biortech.2009.09.079

    Article  CAS  PubMed  Google Scholar 

  • Zhu Z, Sathitsuksanoh N, Zhang Y-HP (2009) Direct quantitative determination of adsorbed cellulase on lignocellulosic biomass with its application to study cellulose desorption for potential recycling. Analyst 134:2267–2272. doi:10.1039/b906065k

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from FEDER and “Fundação para a Ciência e a Tecnologia” (FCT): GlycoCBMs Project PTDC/AGR-FOR/3090/2012–FCOMP-01-0124-FEDER-027948 and Strategic Project PEst-OE/EQB/LA0023/2013, Project “BioInd-Biotechnology and Bioengineering for improved Industrial and Agro-Food processes, REF. NORTE-07-0124-FEDER-000028” Co-funded by the Programa Operacional Regional do Norte (ON.2–O Novo Norte), QREN, FEDER and the PhD grant to DG (SFRH/BD/88623/2012) and ACR (SFRH/BD/89547/2012).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Gama.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomes, D., Rodrigues, A.C., Domingues, L. et al. Cellulase recycling in biorefineries—is it possible?. Appl Microbiol Biotechnol 99, 4131–4143 (2015). https://doi.org/10.1007/s00253-015-6535-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6535-z

Keywords

Navigation