Skip to main content
Log in

High frequency one-step gene replacement in Trichoderma reesei. II. Effects of deletions of individual cellulase genes

  • Original Articles
  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Abstract

Four cellulase genes of Trichoderma reesei, cbh1, cbh2, egl1 and egl2, have been replaced by the amdS marker gene. When linear DNA fragments and flanking regions of the corresponding cellulase locus of more than 1 kb were used, the replacement frequencies were high, ranging from 32 to 52%. Deletion of the major cellobiohydrolase 1 gene led to a 2-fold increase in the production of cellobiohydrolase II; however, replacement of the cbh2 gene did not affect the final cellulase levels and deletion of egl1 or egl2, slightly increased production of both cellobiohydrolases. Based on our results, endoglucanase II accounts for most of the endoglucanase activity produced by the hypercellulolytic host strain. Furthermore, loss of the egl2, gene causes a significant drop in the filter paper-hydrolysing activity, indicating that endoglucanase II has an important role in the total hydrolysis of cellulose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aho S, Olkkonen V, Jalava T, Paloheimo M, Bühler R, Niku-Paavola M-L, Bamford DH, Korhola M (1991) Monoclonal antibodies against core and cellulose-binding domains of Trichoderma reesei cellobiohydrolases I and II and endoglucanase I. Eur J Biochem 200:643–649

    Google Scholar 

  • Bailey MJ, Nevalainen KMH (1981) Induction, isolation and testing of stable Trichoderma reesei mutants with improved production of solubilizing cellulase. Enzyme Microb Technol 3:153–157

    Google Scholar 

  • Bailey MJ, Biely P, Poutanen K (1992) Interlaboratory testing of methods for assay of xylanase activity. J Biotechnol 23:257–270

    Google Scholar 

  • Berka RM, Ward M, Wilson LJ, Hayenga KJ, Kodama KH, Carlomagro LP, Thompson SA (1990) Molecular cloning and deletion of the gene coding aspergillopepsin. Gene 86:153–162

    Google Scholar 

  • Birnboim HC, Doly J (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523

    Google Scholar 

  • Bullock WO, Fernandez JM, Short JM (1987) XL1-Blue: A high efficiency plasmid transforming recA Escherichia coli strain with β-galactosidase selection. BioTechniques 5:376–378

    Google Scholar 

  • Bühler R (1991) Double-antibody sandwich enzyme-linked immunosorbent assay for quantitation of endoglucanase I of Trichoderma reesei. Appl Environ Microbiol 57:3317–3321

    Google Scholar 

  • Esser K, Mohr G (1986) Integrative transformation of filamentous fungi with respect to biotechnological application. Process Biochem 20:153–159

    Google Scholar 

  • Finkelstein DB (1992) Transformation. In: Finkelstein DB, Ball C (eds) Biotechnology of filamentous fungi. Technology and products. Butterworth-Heinemann, Boston, pp 113–156

    Google Scholar 

  • Harkki A, Mäntylä A, Penttilä M, Muttilainen S, Bühler R, Suominen P, Knowles J, Nevalainen H (1991) Genetic engineering of Trichoderma to produce strains with novel cellulase profiles. Enzyme Microb Technol 13:227–233

    Google Scholar 

  • Holmes DS, Quigley M (1981) A rapid boiling method for the preparation of bacterial plasmids. Anal Biochem 114:193–197

    Google Scholar 

  • Karhunen T, Mäntylä A, Nevalainen KMH, Suominen PL (1993) High frequency one-step gene replacement in Trichoderma reesei. I. Endoglucanase I overproduction. Mol Gen Genet 241:515–522

    Google Scholar 

  • Kelly JM, Hynes MJ (1985) Transformation of Aspergillus niger by the amdS gene of Aspergillus nidulans. EMBO J 4:475–479

    Google Scholar 

  • Lowry OH, Roseborough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    Google Scholar 

  • Mandels M, Andreotti R, Roche C (1976) Measurement of saccharifying cellulase. In: Gaden EL, Mandels MH, Reese ET, Spano LA (eds) Biotechnology Bioengineering Symposium 6. Wiley, New York, pp 21–33

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Nevalainen KMH, Palva ET (1978) Production of extracellular enzymes in mutants isolated from Trichoderma viride unable to hydrolyze cellulase. Appl Environ Microbiol 35:11–16

    Google Scholar 

  • Penttilä M, Lehtovaara P, Nevalainen H, Bhikhabhai R, Knowles J (1986) Homology between cellulase genes of Trichoderma reesei: complete nucleotide sequence of the endoglucanase I gene. Gene 45:253–263

    Google Scholar 

  • Penttilä M, André L, Saloheimo M, Lehtovaara P, Knowles JKC (1987a) Expression of two Trichoderma reesei endoglucanases in yeast Saccharomyces cerevisiae. Yeast 3:175–185

    Google Scholar 

  • Penttilä M, Nevalainen H, Rättö M, Salminen E, Knowles J (1987b) A versatile transformation system for the cellulolytic filamentous fungus Trichoderma reesei. Gene 61:155–164

    Google Scholar 

  • Penttilä ME, André L, Lehtovaara P, Bailey M, Teeri TT, Knowles JKC (1988) Efficient secretion of two fungal cellobiohydrolases in Saccharomyces cerevisiae. Gene 63:103–112

    Google Scholar 

  • Raeder U, Broda P (1985) Rapid preparation of DNA from filamentous fungi. Lett Appl Microbiol 1:17–20

    Google Scholar 

  • Saloheimo M, Lehtovaara P, Penttilä M, Teeri TT, Stålberg J, Johansson G, Pettersson G, Claeyssens M, Tomme P, Knowles JKC (1988) EGIII, a new endoglucanase from Trichoderma reesei: the characterization of both gene and enzyme. Gene 63:11–21

    Google Scholar 

  • Seiboth B, Messner R, Gruber F, Kubicek CP (1992) Disruption of the Trichoderma reesei cbh2 gene coding for cellobiohydrolase II leads to a delay in the triggering of cellulase formation by cellulose. J Gen Microbiol 138:1259–1264

    Google Scholar 

  • Shoemaker S, Schweickart V, Ladner M, Gelfand D, Kwok S, Myambo K, Innis M (1983) Molecular cloning of exo-cellobiohydrolase from Trichoderma reesei strain L27. Bio/Technology 1:691–696

    Google Scholar 

  • Suominen P, Mäntylä A, Saarelainen R, Paloheimo M, Fagerström R, Parkkinen E, Nevalainen H (1992) Genetic engineering of Trichoderma reesei to produce suitable enzyme combinations for applications in the pulp and paper industry. In: Kuwahara M, Shimada M (eds) Biotechnology in pulp and paper industry. Uni Publishers, Tokyo, Japan, pp 439–445

    Google Scholar 

  • Teeri T, Salovuori I, Knowles J (1983) The molecular cloning of the major cellulase gene from Trichoderma reesei. Bio/Technology 1:696–699

    Google Scholar 

  • Teeri T, Lehtovaara P, Kauppinen S, Salovuori I, Knowles J (1987) Homologous domains in Trichoderma reesei cellulolytic enzymes: gene sequence and expression of cellobiohydrolase II. Gene 51:43–52

    Google Scholar 

  • van Arsdell JN, Kwok S, Schweickart VL, Ladner MB, Gelfand DH, Innis MA (1987) Cloning, characterization and expression in Saccharomyces cerevisiae of endoglucanase I from Trichoderma reesei. Bio/Technology 5:60–64

    Google Scholar 

  • Woodward (1989) Immobilized cellulases for cellulose utilization. J Biotechnol 11:299–312

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by C. van den Hondel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suominen, P.L., Mäntylä, A.L., Karhunen, T. et al. High frequency one-step gene replacement in Trichoderma reesei. II. Effects of deletions of individual cellulase genes. Molec. Gen. Genet. 241, 523–530 (1993). https://doi.org/10.1007/BF00279894

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00279894

Key words

Navigation