Skip to main content

Cellulase: A Catalytic Powerhouse for Lignocellulosic Waste Valorisation

  • Chapter
  • First Online:
Thermochemical and Catalytic Conversion Technologies for Future Biorefineries

Abstract

Cellulose is the world’s most ubiquitous organic compound and has an abundant potential to be transformed into a renewable source of energy and other industrial products. To break down this complex polymer, cellulase has been conventionally used as a biocatalyst. Other than numerous industrial uses, including detergent, paper and pulp, textile, beverages, feed, baking, and biofuel, the application of cellulase for waste valorisation is also a central thrust area. The cellulolytic action of this enzyme has been explored for utilisation of widely available lignocellulosic waste. This reaction has been critical for the cellulose conversion to glucose and then to biofuel. Apart from biofuel, cellulase has also been employed to convert green waste into value-added products such as prebiotic oligosaccharides, organic acids, and biopolymers that can be integrated into the circular economy. Numerous factors affect the catalytic actions of cellulase, like pretreatment of lignocellulosic biomass, structural and compositional variation, working temperature, and pH. This chapter encompasses a detailed insight into the biocatalytic mechanism, applications, and limitations of cellulase as a potent enzyme for waste valorisation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3Rs:

Reduce reuse and recycle

ATCC:

American type culture collection

BSG:

Brewer’s spent grain

CBG:

Compressed biogas

CMCase:

Carboxymethyl cellulase

CNCs:

Cellulose nanocrystals

CNF:

Cellulose nanofibrils

CO2:

Carbon dioxide

Co60:

Cobalt-60

FPA:

Filter paper assay

FPU:

Filter paper units

GHG:

Greenhouse gas

IFPU:

International unit of filter paper activity

IL:

Ionic liquid

IU:

International enzyme unit

LCA:

Life cycle assessment

MNPs:

Magnetic nano-particles

MPa:

Megapascal

PHA:

Polyhydroxyalkanoates

PLA:

Poly-lactic acid

RSM:

Response surface methodology

SDS:

Sodium dodecyl sulphate

SHF:

Separate hydrolysis and fermentation

SmF:

Submerged fermentation

SMS:

Spent mushroom substance

SmSF:

Simultaneous Saccharification and Fermentation

SSCF:

Saccharification and co-fermentation

SSF:

Solid-state fermentation

TCA:

Tricarboxylic acid

TEA:

Techno-economic analysis

U/g:

Enzyme unit per gram

U/mL:

Enzyme unit per millilitre

USD:

United States dollar

References

  • Abdel-Rahman MA, Hassan SE-D, Roushdy MM, Azab MS, Gaber MA (2019) Free-nutrient supply and thermo-alkaline conditions for direct lactic acid production from mixed lignocellulosic and food waste materials. Bioresour Technol Rep 7:100256

    Article  Google Scholar 

  • Abraham RE, Wong CS, Puri M (2016) Enrichment of cellulosic waste hemp (Cannabis sativa) hurd into non-toxic microfibres. Materials 9(7):562

    Article  PubMed Central  CAS  Google Scholar 

  • Adsul M, Sandhu SK, Singhania RR, Gupta R, Puri SK, Mathur A (2020) Designing a cellulolytic enzyme cocktail for the efficient and economical conversion of lignocellulosic biomass to biofuels. Enzyme Microbial Technol 133:109442

    Article  CAS  Google Scholar 

  • Ahmad R, Khare SK (2018) Immobilization of Aspergillus niger cellulase on multiwall carbon nanotubes for cellulose hydrolysis. Bioresour Technol 252:72–75

    Article  CAS  PubMed  Google Scholar 

  • Al-Battashi HS, Annamalai N, Sivakumar N, Al-Bahry S, Tripathi BN, Nguyen QD, Gupta VK (2019) Lignocellulosic biomass (LCB): a potential alternative biorefinery feedstock for polyhydroxyalkanoates production. Rev Environ Sci Bio/Technol 18(1):183–205

    Article  CAS  Google Scholar 

  • Alexandre EM, Silva S, Santos SA, Silvestre AJ, Duarte MF, Saraiva JA, Pintado M (2019) Antimicrobial activity of pomegranate peel extracts performed by high pressure and enzymatic assisted extraction. Food Res Int 115:167–176

    Article  CAS  PubMed  Google Scholar 

  • Alexandri M, Schneider R, Papapostolou H, Ladakis D, Koutinas A, Venus J (2019) Restructuring the conventional sugar beet industry into a novel biorefinery: fractionation and bioconversion of sugar beet pulp into succinic acid and value-added coproducts. ACS Sustain Chem Eng 7(7):6569–6579

    Article  CAS  Google Scholar 

  • Amalia AV, Fibriana F, Widiatningrum T, Hardianti RD (2021) Bioconversion and valorization of cassava-based industrial wastes to bioethanol gel and its potential application as a clean cooking fuel. Biocatal Agric Biotechnol 102093

    Google Scholar 

  • Ariffin H, Abdullah N, Umi Kalsom M, Shirai Y, Hassan M (2006) Production and characterization of cellulase by Bacillus pumilus EB3. Int J Eng Technol 3(1):47–53

    Google Scholar 

  • Astolfi V, Astolfi AL, Mazutti MA, Rigo E, Di Luccio M, Camargo AF, Dalastra C, Kubeneck S, Fongaro G, Treichel H (2019) Cellulolytic enzyme production from agricultural residues for biofuel purpose on circular economy approach. Bioprocess Biosyst Eng 42(5):677–685

    Article  CAS  PubMed  Google Scholar 

  • Bajaj BK, Sharma M, Rao RS (2014) Agricultural residues for production of cellulase from Sporotrichum thermophile LAR5 and its application for saccharification of rice straw. J Mater Environ Sci 5(5):1454–1460

    Google Scholar 

  • Bansal N, Tewari R, Soni R, Soni SK (2012) Production of cellulases from Aspergillus niger NS-2 in solid state fermentation on agricultural and kitchen waste residues. Waste Manage 32(7):1341–1346

    Article  CAS  Google Scholar 

  • Battaglia M, Thomason W, Fike JH, Evanylo GK, von Cossel M, Babur E, Iqbal Y, Diatta AA (2021) The broad impacts of corn stover and wheat straw removal for biofuel production on crop productivity, soil health and greenhouse gas emissions: a review. Gcb Bioenergy 13(1):45–57

    Article  CAS  Google Scholar 

  • Bhardwaj N, Verma P (2021) Microbial xylanases: a helping module for the enzyme biorefinery platform. In: Srivastava N, Srivastava M (eds) Bioenergy research: evaluating strategies for commercialization and sustainability, vol 27. Wiley Online, pp 2129–2152

    Google Scholar 

  • Bhardwaj N, Kumar B, Agrawal K, Verma P (2021a) Current perspective on production and applications of microbial cellulases: a review. Bioresour Bioprocess 8(1):1–34

    Article  CAS  Google Scholar 

  • Bhardwaj N, Agrawal K, Kumar B, Verma P (2021b) Role of enzymes in deconstruction of waste biomass for sustainable generation of value-added products. In: Thatoi H, Mohapatra S, Das SK (eds) Bioprospecting of enzymes in industry, healthcare and sustainable environment. Springer, Singapore, pp 219–250

    Chapter  Google Scholar 

  • Bharti AK, Kumar A, Kumar A, Dutt D (2018) Exploitation of Parthenium hysterophorous biomass as low-cost substrate for cellulase and xylanase production under solid-state fermentation using Talaromyces stipitatus MTCC 12687. J Radiat Res Appl Sci 11(4):271–280

    Article  CAS  Google Scholar 

  • Borrion AL, McManus MC, Hammond GP (2012) Environmental life cycle assessment of lignocellulosic conversion to ethanol: a review. Renew Sustain Energy Rev 16(7):4638–4650

    Article  CAS  Google Scholar 

  • Brindhadevi K, Samuel MS, Verma TN, Vasantharaj S, Sathiyavimal S, Saravanan M, Pugazhendhi A, Duc PA (2020) Zinc oxide nanoparticles (ZnONPs)-induced antioxidants and photocatalytic degradation activity from hybrid grape pulp extract (HGPE). Biocatal Agric Biotechnol 28:101730

    Article  Google Scholar 

  • Camassola M, Dillon A (2007) Production of cellulases and hemicellulases by Penicillium echinulatum grown on pretreated sugar cane bagasse and wheat bran in solid-state fermentation. J Appl Microbiol 103(6):2196–2204

    Article  CAS  PubMed  Google Scholar 

  • Carrillo-Nieves D, Saldarriaga-Hernandez S, GutiĂ©rrez-Soto G, Rostro-Alanis M, Hernández-Luna C, Alvarez AJ, Iqbal HM, Parra-SaldĂ­var R (2020) Biotransformation of agro-industrial waste to produce lignocellulolytic enzymes and bioethanol with a zero waste. Biomass Convers Biorefin:1–12

    Google Scholar 

  • Catalán E, Komilis D, Sánchez A (2019) Environmental impact of cellulase production from coffee husks by solid-state fermentation: a life-cycle assessment. J Clean Prod 233:954–962

    Article  CAS  Google Scholar 

  • Chand P, Aruna A, Maqsood A, Rao L (2005) Novel mutation method for increased cellulase production. J Appl Microbiol 98(2):318–323

    Article  CAS  PubMed  Google Scholar 

  • Chandel AK, Chandrasekhar G, Silva MB, SilvĂ©rio da Silva S (2012) The realm of cellulases in biorefinery development. Crit Rev Biotechnol 32(3):187–202

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Su Z, Wang Y, Wang B, Si Z, Lu J, Su C, Ren W, Chen H, Cai D (2020) Lactic acid production from pretreated corn stover with recycled streams. Process Biochem 91:132–140

    Article  CAS  Google Scholar 

  • Chi X, Li J, Wang X, Zhang Y, Antwi P (2018) Hyper-production of butyric acid from delignified rice straw by a novel consolidated bioprocess. Bioresour Technol 254:115–120

    Article  CAS  PubMed  Google Scholar 

  • Cunha FM, Badino AC, Farinas CS (2017) Effect of a novel method for in-house cellulase production on 2G ethanol yields. Biocatal Agric Biotechnol 9:224–229

    Article  Google Scholar 

  • Cunha JT, RomanĂ­ A, Inokuma K, Johansson B, Hasunuma T, Kondo A, Domingues L (2020) Consolidated bioprocessing of corn cob-derived hemicellulose: engineered industrial Saccharomyces cerevisiae as efficient whole cell biocatalysts. Biotechnol Biofuels 13(1):1–15

    Article  CAS  Google Scholar 

  • Daniel GO, John EM, Lee RL (2012) Recent progress in consolidated bioprocessing. Curr Opin Biotechnol 23(3)

    Google Scholar 

  • Dar MA, Pawar KD, Rajput BP, Rahi P, Pandit RS (2019) Purification of a cellulase from cellulolytic gut bacterium, Bacillus tequilensis G9 and its evaluation for valorization of agro-wastes into added value byproducts. Biocatal Agric Biotechnol 20:101219

    Article  Google Scholar 

  • Das P, Solanki R, Khanna M (2014) Isolation and screening of cellulolytic actinomycetes from diverse habitats. Int J Adv Biotechnol Res 5(3):438–451

    Google Scholar 

  • Datta S, Christena LR, Rajaram YRS (2013) Enzyme immobilization: an overview on techniques and support materials. 3 Biotech 3(1):1–9

    Article  PubMed  Google Scholar 

  • de Aguiar J, Bondancia TJ, Claro PIC, Mattoso LHC, Farinas CS, Marconcini JM (2020) Enzymatic deconstruction of sugarcane bagasse and straw to obtain cellulose nanomaterials. ACS Sustain Chem Eng 8(5):2287–2299

    Article  CAS  Google Scholar 

  • Demirbas A, Taylan O, Kaya D (2016) Biogas production from municipal sewage sludge (MSS). Energy Sources, Part A: Recov Util Environ Effects 38(20):3027–3033

    Article  CAS  Google Scholar 

  • Deswal D, Khasa YP, Kuhad RC (2011) Optimization of cellulase production by a brown rot fungus Fomitopsis sp. RCK2010 under solid state fermentation. Bioresour Technol 102(10):6065–6072

    Article  CAS  PubMed  Google Scholar 

  • Dragone G, Kerssemakers AA, Driessen JL, Yamakawa CK, Brumano LP, Mussatto SI (2020) Innovation and strategic orientations for the development of advanced biorefineries. Bioresour Technol 302:122847

    Article  CAS  PubMed  Google Scholar 

  • Dutta T, Sahoo R, Sengupta R, Ray SS, Bhattacharjee A, Ghosh S (2008) Novel cellulases from an extremophilic filamentous fungi Penicillium citrinum: production and characterization. J Ind Microbiol Biotechnol 35(4):275–282

    Article  CAS  PubMed  Google Scholar 

  • Ekperigin M (2007) Preliminary studies of cellulase production by Acinetobacter anitratus and Branhamella sp. Afr J Biotechnol 6(1)

    Google Scholar 

  • Fang X, Yano S, Inoue H, Sawayama S (2009) Strain improvement of Acremonium cellulolyticus for cellulase production by mutation. J Biosci Bioeng 107(3):256–261

    Article  CAS  PubMed  Google Scholar 

  • Garlapati VK, Chandel AK, Kumar SJ, Sharma S, Sevda S, Ingle AP, Pant D (2020) Circular economy aspects of lignin: towards a lignocellulose biorefinery. Renew Sustain Energy Rev 130:109977

    Article  CAS  Google Scholar 

  • George SP, Ahmad A, Rao MB (2001) Studies on carboxymethyl cellulase produced by an alkalothermophilic actinomycete. Bioresour Technol 77(2):171–175

    Article  CAS  PubMed  Google Scholar 

  • Gomes D, Domingues L, Gama M (2016) Valorizing recycled paper sludge by a bioethanol production process with cellulase recycling. Bioresour Technol 216:637–644

    Article  CAS  PubMed  Google Scholar 

  • Grewal J, Khare S (2018) One-pot bioprocess for lactic acid production from lignocellulosic agro-wastes by using ionic liquid stable Lactobacillus brevis. Bioresour Technol 251:268–273

    Article  CAS  PubMed  Google Scholar 

  • Grigorevski-Lima AL, de Oliveira MMQ, do Nascimento RP, da Silva Bon EP, Coelho RRR (2013) Production and partial characterization of cellulases and xylanases from Trichoderma atroviride 676 using lignocellulosic residual biomass. Appl Biochem Biotechnol 169(4):1373–1385

    Article  CAS  PubMed  Google Scholar 

  • Guo Z-P, Robin J, Duquesne S, O’Donohue MJ, Marty A, Bordes F (2018) Developing cellulolytic Yarrowia lipolytica as a platform for the production of valuable products in consolidated bioprocessing of cellulose. Biotechnol Biofuels 11(1):1–15

    Article  CAS  Google Scholar 

  • Han J, Wang L, Wang Y, Dong J, Tang X, Ni L, Wang L (2018) Preparation and characterization of Fe3O4-NH2@4-arm-PEGNH2, a novel magnetic four-arm polymer-nanoparticle composite for cellulase immobilization. Biochem Eng J 130:90–98

    Article  CAS  Google Scholar 

  • Hamdi C, Arous F, Jaouani A (2020) Actinobacteria: a promising source of enzymes involved in lignocellulosic biomass conversion. Adv Biotechnol Microbiol 13

    Google Scholar 

  • Heng KS, Hatti-Kaul R, Adam F, Fukui T, Sudesh K (2017) Conversion of rice husks to polyhydroxyalkanoates (PHA) via a three-step process: optimized alkaline pretreatment, enzymatic hydrolysis, and biosynthesis by Burkholderia cepacia USM (JCM 15050). J Chem Technol Biotechnol 92(1):100–108

    Article  CAS  Google Scholar 

  • Hong Y, Nizami AS, Pour Bafrani M, Saville BA, MacLean HL (2013) Impact of cellulase production on environmental and financial metrics for lignocellulosic ethanol. Biofuels Bioprod Biorefin 7(3):303–313

    Article  CAS  Google Scholar 

  • Hou W, Bao J (2018) Simultaneous saccharification and aerobic fermentation of high titer cellulosic citric acid by filamentous fungus Aspergillus niger. Bioresour Technol 253:72–78

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Du C, Leu S-Y, Jing H, Li X, Lin CSK (2018) Valorisation of textile waste by fungal solid state fermentation: an example of circular waste-based biorefinery. Resour Conserv Recycl 129:27–35

    Article  Google Scholar 

  • Humbird D, Davis R, Tao L, Kinchin C, Hsu D, Aden A, Schoen P, Lukas J, Olthof B, Worley M (2011) Process design and economics for biochemical conversion of lignocellulosic biomass to ethanol: dilute-acid pretreatment and enzymatic hydrolysis of corn stover. National Renewable Energy Lab. (NREL), Golden, CO

    Google Scholar 

  • Husain Q (2016) Magnetic nanoparticles as a tool for the immobilization/stabilization of hydrolases and their applications: an overview. Biointerface Res Appl Chem 6(6)

    Google Scholar 

  • Ingle AP, Rathod J, Pandit R, da Silva SS, Rai M (2017) Comparative evaluation of free and immobilized cellulase for enzymatic hydrolysis of lignocellulosic biomass for sustainable bioethanol production. Cellulose 24(12):5529–5540

    Article  CAS  Google Scholar 

  • Irfan M, Safdar A, Syed Q, Nadeem M (2012) Isolation and screening of cellulolytic bacteria from soil and optimization of cellulase production and activity. Turkish J Biochem/Turk Biyokimya Dergisi 37(3)

    Google Scholar 

  • Israni N, Shivakumar S (2020) Polyhydroxyalkanoate (PHA) biosynthesis from directly valorized ragi husk and sesame oil cake by Bacillus megaterium strain Ti3: satistical optimization and characterization. Int J Biol Macromol 148:20–30

    Article  CAS  PubMed  Google Scholar 

  • Jaiswal AK, Kumar V, Khakalo A, Lahtinen P, Solin K, Pere J, Toivakka M (2021) Rheological behavior of high consistency enzymatically fibrillated cellulose suspensions. Cellulose 28(4):2087–2104

    Article  CAS  Google Scholar 

  • Jatinder K, Chadha BS, Saini HS (2006) Optimization of medium components for production of cellulases by Melanocarpus sp. MTCC 3922 under solid-state fermentation. World J Microbiol Biotechnol 22(1):15–22

    Article  CAS  Google Scholar 

  • Jayasekara S, Ratnayake R (2019) Microbial cellulases: an overview and applications. Cellulose 22

    Google Scholar 

  • Jiang M, Xu R, Xi YL, Zhang JH, Dai WY, Wan YJ, Chen KQ, Wei P (2013) Succinic acid production from cellobiose by Actinobacillus succinogenes. Bioresour Technol 135:469–474

    Article  CAS  PubMed  Google Scholar 

  • Kanmani R, Vijayabaskar P, Jayalakshmi S (2011) Saccharification of banana-agro waste and clarification of apple juice by cellulase enzyme produced from Bacillus pumilis. World Appl Sci J 12(11):2120–2128

    Google Scholar 

  • Karim Z, Afrin S, Husain Q, Danish R (2017) Necessity of enzymatic hydrolysis for production and functionalization of nanocelluloses. Crit Rev Biotechnol 37(3):355–370

    Article  CAS  PubMed  Google Scholar 

  • Karnaouri A, Matsakas L, Krikigianni E, Rova U, Christakopoulos P (2019) Valorization of waste forest biomass toward the production of cello-oligosaccharides with potential prebiotic activity by utilizing customized enzyme cocktails. Biotechnol Biofuels 12(1):1–19

    Article  CAS  Google Scholar 

  • Karthik T, Rathinamoorthy R (2017) Sustainable synthetic fibre production. In: Sustainable fibres and textiles. Elsevier, pp 191–240

    Chapter  Google Scholar 

  • Kazi FK, Fortman J, Anex R, Kothandaraman G, Hsu D, Aden A, Dutta A (2010) Techno-economic analysis of biochemical scenarios for production of cellulosic ethanol. National Renewable Energy Lab. (NREL), Golden, CO

    Book  Google Scholar 

  • Khan MN, Luna IZ, Islam MM, Sharmeen S, Salem KS, Rashid TU, Zaman A, Haque P, Rahman MM (2016) Cellulase in waste management applications. In: New and future developments in microbial biotechnology and bioengineering. Elsevier, pp 237–256

    Chapter  Google Scholar 

  • Kovács K, Megyeri L, Szakacs G, Kubicek CP, Galbe M, Zacchi G (2008) Trichoderma atroviride mutants with enhanced production of cellulase and β-glucosidase on pretreated willow. Enzym Microb Technol 43(1):48–55

    Article  CAS  Google Scholar 

  • Kuhad RC, Deswal D, Sharma S, Bhattacharya A, Jain KK, Kaur A, Pletschke BI, Singh A, Karp M (2016) Revisiting cellulase production and redefining current strategies based on major challenges. Renew Sustain Energy Rev 55:249–272

    Article  CAS  Google Scholar 

  • Kumar B, Verma P (2021a) Biomass-based biorefineries: an important architype towards a circular economy. Fuel 288:119622

    Article  CAS  Google Scholar 

  • Kumar B, Verma P (2021b) Techno-economic assessment of biomass-based integrated biorefinery for energy and value-added product. In: Verma P (ed) Biorefineries: a step towards renewable and clean energy. Clean energy production technologies. Springer, Singapore, pp 581–561

    Google Scholar 

  • Kumar B, Verma P (2021c) Life cycle assessment: blazing a trail for bioresources management. Energy Convers Manage: X 10:100063

    CAS  Google Scholar 

  • Kumar B, Bhardwaj N, Alam A, Agrawal K, Prasad H, Verma P (2018) Production, purification and characterization of an acid/alkali and thermo tolerant cellulase from Schizophyllum commune NAIMCC-F-03379 and its application in hydrolysis of lignocellulosic wastes. AMB Express 8(1):1–16

    Article  CAS  Google Scholar 

  • Kumar RP, Gnansounou E, Raman JK, Baskar G (2019) Refining biomass residues for sustainable energy and bioproducts: technology, advances, life cycle assessment, and economics. Academic Press

    Google Scholar 

  • Kumar B, Bhardwaj N, Agrawal K, Chaturvedi V, Verma P (2020a) Current perspective on pretreatment technologies using lignocellulosic biomass: an emerging biorefinery concept. Fuel Process Technol 199:106244

    Article  CAS  Google Scholar 

  • Kumar B, Bhardwaj N, Agrawal K, Verma P (2020b) Bioethanol production: generation-based comparative status measurements. In: Srivastava N, Srivastava M, Mishra P, Gupta V (eds) Biofuel production technologies: critical analysis for sustainability. Clean energy production technologies. Springer, Singapore, pp 155–201

    Chapter  Google Scholar 

  • Lai TT, Pham TTH, AdjallĂ© K, Montplaisir D, Brouillette F, BarnabĂ© S (2017) Production of Trichoderma reesei RUT C-30 lignocellulolytic enzymes using paper sludge as fermentation substrate: an approach for on-site manufacturing of enzymes for biorefineries. Waste Biomass Valorization 8(4):1081–1088

    Article  CAS  Google Scholar 

  • Latifian M, Hamidi-Esfahani Z, Barzegar M (2007) Evaluation of culture conditions for cellulase production by two Trichoderma reesei mutants under solid-state fermentation conditions. Bioresour Technol 98(18):3634–3637

    Article  CAS  PubMed  Google Scholar 

  • Li C, Yang X, Gao S, Chuh AH, Lin CSK (2018) Hydrolysis of fruit and vegetable waste for efficient succinic acid production with engineered Yarrowia lipolytica. J Clean Prod 179:151–159

    Article  CAS  Google Scholar 

  • Li C, Lin X, Ling X, Li S, Fang H (2021) Consolidated bioprocessing of lignocellulose for production of glucaric acid by an artificial microbial consortium. Biotechnol Biofuels 14(1):1–16

    Article  CAS  Google Scholar 

  • Libardi N, Soccol CR, de Carvalho JC, de Souza Vandenberghe LP (2019) Simultaneous cellulase production using domestic wastewater and bioprocess effluent treatment—a biorefinery approach. Bioresour Technol 276:42–50

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Duncan S, Qureshi N, Rich J (2018) Fermentative production of butyric acid from paper mill sludge hydrolysates using Clostridium tyrobutyricum NRRL B-67062/RPT 4213. Biocatal Agric Biotechnol 14:48–51

    Article  Google Scholar 

  • Liu L, You Y, Deng H, Guo Y, Meng Y (2019) Promoting hydrolysis of apple pomace by pectinase and cellulase to produce microbial oils using engineered Yarrowia lipolytica. Biomass Bioenergy 126:62–69

    Article  CAS  Google Scholar 

  • LlimĂłs J, MartĂ­nez-Avila O, Marti E, Corchado-Lopo C, Llenas L, Gea T, Ponsá S, Biorefinery. (2020) Brewer’s spent grain biotransformation to produce lignocellulolytic enzymes and polyhydroxyalkanoates in a two-stage valorization scheme. Biomass Convers:1–12

    Google Scholar 

  • LĂłpez-MondĂ©jar R, Algora C, Baldrian P (2019) Lignocellulolytic systems of soil bacteria: a vast and diverse toolbox for biotechnological conversion processes. Biotechnoly Adv 37(6):107374

    Article  CAS  Google Scholar 

  • Lu Y, Wang Y, Xu G, Chu J, Zhuang Y, Zhang S (2010) Influence of high solid concentration on enzymatic hydrolysis and fermentation of steam-exploded corn stover biomass. Appl Biochem Biotechnol 160(2):360–369

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Gao M, Wang N, Liu S, Wang Q, Sun X (2021) Lactic acid production from co-fermentation of food waste and spent mushroom substance with Aspergillus niger cellulase. Bioresour Technol 337:125365

    Article  CAS  PubMed  Google Scholar 

  • Malgas S, Rose SH, van Zyl WH, Pletschke BI (2020) Enzymatic hydrolysis of softwood derived paper sludge by an in vitro recombinant cellulase cocktail for the production of fermentable sugars. Catalysts 10(7):775

    Article  CAS  Google Scholar 

  • Michelin M, Gomes DG, RomanĂ­ A, Polizeli MDL, Teixeira JA (2020) Nanocellulose production: exploring the enzymatic route and residues of pulp and paper industry. Molecules 25(15):3411

    Article  CAS  PubMed Central  Google Scholar 

  • Mo H, Qiu J, Yang C, Zang L, Sakai E, Chen J (2020) Porous biochar/chitosan composites for high performance cellulase immobilization by glutaraldehyde. Enzyme Microbial Technol 138:109561

    Article  CAS  Google Scholar 

  • Motaung TE, Linganiso LZ (2018) Critical review on agrowaste cellulose applications for biopolymers. Int J Plast Technol 22(2):185–216

    Article  CAS  Google Scholar 

  • Nargotra P, Sharma V, Bajaj BK (2019) Consolidated bioprocessing of surfactant-assisted ionic liquid-pretreated Parthenium hysterophorus L. biomass for bioethanol production. Bioresour Technol 289:121611

    Article  CAS  PubMed  Google Scholar 

  • Nawaz MA, Karim A, Bibi Z, Rehman HU, Aman A, Hussain D, Ullah M, Qader SAU (2016) Maltase entrapment approach as an efficient alternative to increase the stability and recycling efficiency of free enzyme within agarose matrix. J Taiwan Inst Chem Eng 64:31–38

    Article  CAS  Google Scholar 

  • Ning P, Yang G, Hu L, Sun J, Shi L, Zhou Y, Wang Z, Yang J (2021) Recent advances in the valorization of plant biomass. Biotechnol Biofuels 14(1):1–22

    Article  Google Scholar 

  • Obruca S, Benesova P, Marsalek L, Marova I, quarterly, b.e. (2015) Use of lignocellulosic materials for PHA production. Chemical 29(2):135–144

    CAS  Google Scholar 

  • Oliveira FM, Pinheiro IO, Souto-Maior AM, Martin C, Gonçalves AR, Rocha GJ (2013) Industrial-scale steam explosion pretreatment of sugarcane straw for enzymatic hydrolysis of cellulose for production of second generation ethanol and value-added products. Bioresour Technol 130:168–173

    Article  CAS  PubMed  Google Scholar 

  • Olofsson J, Barta Z, Börjesson P, Wallberg O (2017) Integrating enzyme fermentation in lignocellulosic ethanol production: life-cycle assessment and techno-economic analysis. Biotechnol Biofuels 10(1):1–14

    Article  CAS  Google Scholar 

  • Patsalou M, Samanides CG, Protopapa E, Stavrinou S, Vyrides I, Koutinas M (2019) A citrus peel waste biorefinery for ethanol and methane production. Molecules 24(13):2451

    Article  CAS  PubMed Central  Google Scholar 

  • Rabelo SC, Maciel Filho R, Costa AC (2008) A comparison between lime and alkaline hydrogen peroxide pretreatments of sugarcane bagasse for ethanol production. In: Biotechnology for fuels and chemicals. Springer, pp 563–576

    Chapter  Google Scholar 

  • Rabinovich M, Melnick M, Bolobova AJB (2002) The structure and mechanism of action of cellulolytic enzymes. Biochemistry (Moscow) 67(8):850–871

    Article  CAS  Google Scholar 

  • Rajnish KN, Samuel MS, John A, Datta S, Narendhar C, Balaji R, Jose S, Selvarajan E (2021) Immobilization of cellulase enzymes on nano and micro-materials for breakdown of cellulose for biofuel production-a narrative review. Int J Biol Macromol 182:1793–1802

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro RS, Pohlmann BC, Calado V, Bojorge N, Pereira N Jr (2019) Production of nanocellulose by enzymatic hydrolysis: trends and challenges. Eng Life Sci 19(4):279–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruales-Salcedo AV, Higuita JC, Fontalvo J (2020) Integration of a multi-enzyme system with a liquid membrane in Taylor flow regime for the production and in situ recovery of gluconic acid from cellulose. Chem Eng Proces-Process Intensification 157:108140

    Article  CAS  Google Scholar 

  • Russell A, Ekvall T, Baumann H (2005) Life cycle assessment introduction and overview. J Clean Prod 13(13–14):1207–1210

    Article  Google Scholar 

  • Safarik I, Pospiskova K, Baldikova E, Safarikova M (2016) Development of advanced biorefinery concepts using magnetically responsive materials. Biochem Eng J 116:17–26

    Article  CAS  Google Scholar 

  • Saha BC, Cotta MA (2008) Lime pretreatment, enzymatic saccharification and fermentation of rice hulls to ethanol. Biomass Bioenergy 32(10):971–977

    Article  CAS  Google Scholar 

  • Saldarriaga-Hernández S, Velasco-Ayala C, Flores PL-I, de JesĂşs Rostro-Alanis M, Parra-Saldivar R, Iqbal HM, Carrillo-Nieves D (2020) Biotransformation of lignocellulosic biomass into industrially relevant products with the aid of fungi-derived lignocellulolytic enzymes. Int J Biol Macromol 161:1099–1116

    Article  PubMed  CAS  Google Scholar 

  • Saliu BK, Sani A (2012) Bioethanol potentials of corn cob hydrolysed using cellulases of Aspergillus niger and Penicillium decumbens. Excli J 11:468

    PubMed  PubMed Central  Google Scholar 

  • Salvi DA, Aita GM, Robert D, Bazan V (2010) Dilute ammonia pretreatment of sorghum and its effectiveness on enzyme hydrolysis and ethanol fermentation. Appl Biochem Biotechnol 161(1):67–74

    Article  CAS  PubMed  Google Scholar 

  • Sarsaiya S, Jain A, Awasthi SK, Duan Y, Awasthi MK, Shi J (2019) Microbial dynamics for lignocellulosic waste bioconversion and its importance with modern circular economy, challenges and future perspectives. Bioresour Technol 291:121905

    Article  CAS  PubMed  Google Scholar 

  • Scarlata CJ, Davis RE, Tao L, Tan EC, Biddy MJ (2015) Perspectives on process analysis for advanced biofuel production. In: Direct microbial conversion of biomass to advanced biofuels. Elsevier, pp 33–60

    Chapter  Google Scholar 

  • Sheldon RA (2020) Biocatalysis and biomass conversion: enabling a circular economy. Philos Trans Royal Soc A 378(2176):20190274

    Article  CAS  Google Scholar 

  • Sillu D, Agnihotri S (2019) Cellulase immobilization onto magnetic halloysite nanotubes: enhanced enzyme activity and stability with high cellulose saccharification. ACS Sustain Chem Eng 8(2):900–913

    Article  CAS  Google Scholar 

  • Singh A, Bajar S, Devi A, Bishnoi NR (2021) Adding value to agro-industrial waste for cellulase and xylanase production via solid-state bioconversion. Biomass Convers Biorefin:1–10

    Google Scholar 

  • Siqueira JGW, Rodrigues C, de Souza Vandenberghe LP, Woiciechowski AL, Soccol CR (2020) Current advances in on-site cellulase production and application on lignocellulosic biomass conversion to biofuels: a review. Biomass Bioenergy 132:105419

    Article  CAS  Google Scholar 

  • Soares LA, Braga JK, Motteran F, Sakamoto IK, Monteiro PAS, Seleghim P, Varesche MBA (2019) Bioconversion of sugarcane bagasse into value-added products by bioaugmentation of endogenous cellulolytic and fermentative communities. Waste Biomass Valorization 10(7):1899–1912

    Article  CAS  Google Scholar 

  • Squinca P, Bilatto S, Badino AC, Farinas CS (2020) Nanocellulose production in future biorefineries: an integrated approach using tailor-made enzymes. ACS Sustain Chem Eng 8(5):2277–2286

    Article  CAS  Google Scholar 

  • Srivastava N, Srivastava M, Alhazmi A, Kausar T, Haque S, Singh R, Ramteke PW, Mishra PK, Tuohy M, Leitgeb M (2021) Technological advances for improving fungal cellulase production from fruit wastes for bioenergy application: a review. Environ Pollut 287, 117370

    Google Scholar 

  • Subramanian K, Chopra SS, Cakin E, Li X, Lin CSK (2020) Environmental life cycle assessment of textile bio-recycling–valorizing cotton-polyester textile waste to pet fiber and glucose syrup. Resour Conserv Recycl 161:104989

    Article  Google Scholar 

  • Sukumaran RK, Singhania RR, Mathew GM, Pandey A (2009) Cellulase production using biomass feed stock and its application in lignocellulose saccharification for bio-ethanol production. Renew Energy 34(2):421–424

    Article  CAS  Google Scholar 

  • Sun FF, Hong J, Hu J, Saddler JN, Fang X, Zhang Z, Shen S (2015) Accessory enzymes influence cellulase hydrolysis of the model substrate and the realistic lignocellulosic biomass. Enzyme Microbial Technol 79:42–48

    Article  CAS  Google Scholar 

  • Teo HL, Wahab RA (2020) Towards an eco-friendly deconstruction of agro-industrial biomass and preparation of renewable cellulose nanomaterials: a review. Int J Biol Macromol 161:1414–1430

    Article  CAS  PubMed  Google Scholar 

  • Van Zyl WH (1985) A study of the cellulases produced by three mesophilic actinomycetes grown on bagasse as substrate. Biotechnol Bioeng 27(9):1367–1373

    Article  PubMed  Google Scholar 

  • Vermelho AB, Supuran CT, Guisan JM (2012) Microbial enzyme: applications in industry and in bioremediation. Enzyme Res 2012

    Google Scholar 

  • Victoria J, Odaneth A, Lali A (2017) Importance of cellulase cocktails favoring hydrolysis of cellulose. Prep Biochem Biotechnol 47(6):547–553

    Article  CAS  PubMed  Google Scholar 

  • Vu VH, Pham TA, Kim K (2011) Improvement of fungal cellulase production by mutation and optimization of solid state fermentation. Mycobiology 39(1):20–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Chen GQ (2017) Polyhydroxyalkanoates: sustainability, production, and industrialization. In: Sustainable polymers from biomass. Wiley VCH, Weinheim, Germany, p 14

    Google Scholar 

  • Xia L, Cen P (1999) Cellulase production by solid state fermentation on lignocellulosic waste from the xylose industry. Process Biochem 34(9):909–912

    Article  CAS  Google Scholar 

  • Xin F, Geng A (2010) Horticultural waste as the substrate for cellulase and hemicellulase production by Trichoderma reesei under solid-state fermentation. Appl Biochem Biotechnol 162(1):295–306

    Article  CAS  PubMed  Google Scholar 

  • Xin F, Geng A, Chen ML, Gum MJM (2010) Enzymatic hydrolysis of sodium dodecyl sulphate (SDS)—pretreated newspaper for cellulosic ethanol production by Saccharomyces cerevisiae and Pichia stipitis. Appl Biochem Biotechnol 162(4):1052–1064

    Article  CAS  PubMed  Google Scholar 

  • Yadav N, Nain L, Khare SK (2021) One-pot production of lactic acid from rice straw pretreated with ionic liquid. Bioresour Technol 323:124563

    Article  CAS  PubMed  Google Scholar 

  • Yarbrough JM, Zhang R, Mittal A, Vander Wall T, Bomble YJ, Decker SR, Himmel ME, Ciesielski PN (2017) Multifunctional cellulolytic enzymes outperform processive fungal cellulases for coproduction of nanocellulose and biofuels. Acs Nano 11(3):3101–3109

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Zhang Z, Li J, Su Y, Gao M, Jin T, Chen G (2021) Co-immobilization of multi-enzyme on reversibly soluble polymers in cascade catalysis for the one-pot conversion of gluconic acid from corn straw. Bioresour Technol 321:124509

    Article  CAS  PubMed  Google Scholar 

  • Zaki M, Khalil HA, Sabaruddin F, Bairwan R, Oyekanmi AA, Alfatah T, Danish M, Mistar E, Abdullah C (2021) Microbial treatment for nanocellulose extraction from marine algae and its applications as sustainable functional material. Bioresour Technol Rep 100811

    Google Scholar 

  • Zeng J, Liu L, Li J, Dong J, Cheng Z (2020) Properties of cellulose nanofibril produced from wet ball milling after enzymatic treatment vs. mechanical grinding of bleached softwood kraft fibers. BioResources 15(2):3809–3820

    Article  CAS  Google Scholar 

  • Zhang X-Z, Zhang Y-HP (2013) Cellulases: characteristics, sources, production, and applications. Bioprocess Technol Biorefin Sustain Prod Fuels, Chem, Polym 1:131–146

    Google Scholar 

  • Zhang Y, Chen J, Zhang L, Zhan P, Liu N, Wu Z (2020) Preparation of nanocellulose from steam exploded poplar wood by enzymolysis assisted sonication. Mater Res Express 7(3):035010

    Article  CAS  Google Scholar 

  • Zhao C, Zou Z, Li J, Jia H, Liesche J, Chen S, Fang H (2018) Efficient bioethanol production from sodium hydroxide pretreated corn stover and rice straw in the context of on-site cellulase production. Renew Energy 118:14–24

    Article  CAS  Google Scholar 

  • Zhou X, Xu Y (2019) Integrative process for sugarcane bagasse biorefinery to co-produce xylooligosaccharides and gluconic acid. Bioresour Technol 282:81–87

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupika Sinha .

Editor information

Editors and Affiliations

Ethics declarations

There is no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, S., Chakravarty, I., Khade, S.M., Srivastava, J., Sinha, R. (2022). Cellulase: A Catalytic Powerhouse for Lignocellulosic Waste Valorisation. In: Verma, P. (eds) Thermochemical and Catalytic Conversion Technologies for Future Biorefineries. Clean Energy Production Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-19-4312-6_6

Download citation

Publish with us

Policies and ethics