Skip to main content
Log in

Controlled adsorption of cellulase onto pretreated corncob by pH adjustment

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The effective recycling of cellulase requires an in-depth understanding of cellulase adsorption and desorption. In the present study, we examined the adsorption behaviors and stabilities of cellulase at different pH values. Acidic pH (<4.8) was found to favor adsorption, whereas neutral and alkaline pH (especially pH 7 and 10) favored desorption. The influence of pH on cellulase activity was temperature dependent. Under mild conditions (e.g., pH 7 and 25 °C), the effect of pH on cellulase activity was reversible, and the cellulase activity can return to almost 100% by adjusting the pH value to 4.8. However, under severe conditions (e.g. pH 10 and 50 °C), irreversible inactivation may take place. We also explored the roles of pH and temperature in cellulase adsorption kinetics and isotherms. At pH 4.8, temperature had no remarkable effect on the adsorption capacity of the cellulases onto substrate. However, at pH 7 and 10, high temperatures lead to more cellulase desorption. Only at pH 4.8 does cellulase adsorption well fit (R 2 > 0.96) the pseudo-first-order kinetic and Langmuir adsorption isotherm (R 2 > 0.99) models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CBD:

Cellulose-binding domain

SAA:

Soaking in aqueous ammonia

SAA-CC:

SAA-corncob

FPU:

Filter paper unit

NREL:

National renewable energy laboratory

HPLC:

High-performance liquid chromatography

CEL-SELP:

Cellulolytic enzyme lignin from steam-exploded Lodgepole pine

CEL-EPLP:

Cellulolytic enzyme lignin from ethanol (organosolv)-pretreated Lodgepole pine

References

  • Azevedo H, Ramos LP, Cavaco-Paulo A (2001) Desorption of cellulases from cotton powder. Biotechnol Lett 23(17):1445–1448

    Article  CAS  Google Scholar 

  • Banerjee G, Scott-Craig JS, Walton JD (2010) Improving enzymes for biomass conversion: a basic research perspective. Bioenerg Res 3(1):82–92

    Article  Google Scholar 

  • Bansal P, Hall M, Realff MJ, Lee JH, Bommarius AS (2009) Modeling cellulase kinetics on lignocellulosic substrates. Biotechnol Adv 27(6):833–848

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analyt Biochem 72(1–2):248–254

    Article  CAS  Google Scholar 

  • Copeland RA (2000) Enzymes: a practical introduction to structure, mechanism, and data analysis. Wiley, New York, NY

    Google Scholar 

  • Ding H (2000) Adsorption and synergism of cellulases during hydrolysis of cellulosic materials. Ph D Thesis, University of California, Davis

  • Dourado F, Mota M, Pala H, Gama FM (1999) Effect of cellulase adsorption on the surface and interfacial properties of cellulose. Cellulose 6(4):265–282

    Article  CAS  Google Scholar 

  • Esteghlalian AR, Bilodeau M, Mansfield SD, Saddler JN (2001) Do enzymatic hydrolyzability and Simons’ stain reflect the changes in the accessibility of lignocellulosic substrates to cellulase enzymes? Biotechnol Progr 17(6):1049–1054

    Article  CAS  Google Scholar 

  • Gerber PJ, Joyce TW, Heitmann JA, Siika-Aho M, Buchert J (1997) Adsorption of a Trichoderma reesei endoglucanase and cellobiohydrolase onto bleached kraft fibres. Cellulose 4(4):255–268

    Article  CAS  Google Scholar 

  • Ghose TK (1987) Measurement of cellulase activities. Pure Appl Chem 59:257–268

    Article  CAS  Google Scholar 

  • Girard DJ, Converse AO (1993) Recovery of cellulase from lignaceous hydrolysis residue. Appl Biochem Biotech 39–40(1):521–533

    Article  Google Scholar 

  • Gregg DJ, Saddler JN (1996) Factors affecting cellulose hydrolysis and the potential of enzyme recycle to enhance the efficiency of an integrated wood to ethanol process. Biotechnol Bioeng 51(4):375–383

    Article  CAS  Google Scholar 

  • Gupta R, Lee YY (2010) Investigation of biomass degradation mechanism in pretreatment of switchgrass by aqueous ammonia and sodium hydroxide. Bioresour Technol 101(21):8185–8191

    Article  CAS  Google Scholar 

  • Hu G, Heitmann JA, Rojas OJ, Pawlak JJ, Argyropoulos DS (2010) Monitoring cellulase protein adsorption and recovery using SDS-PAGE. Ind Eng Chem Res 49(18):8333–8338

    Article  CAS  Google Scholar 

  • Huang RL, Su RX, Qi W, He ZM (2010) Understanding the key factors for enzymatic conversion of pretreated lignocellulose by partial least square analysis. Biotechnol Progr 26(2):384–392

    CAS  Google Scholar 

  • Huang RL, Su RX, Qi W, He ZM (2011) Bioconversion of lignocellulose into bioethanol: process intensification and mechanism research. Bioenerg Res 4(4):225–245

    Article  Google Scholar 

  • Jäger G, Wu Z, Garschhammer K, Engel P, Klement T, Rinaldi R, Spiess AC, Büchs J (2010) Practical screening of purified cellobiohydrolases and endoglucanases with alpha-cellulose and specification of hydrodynamics. Biotechnol Biofuels 3(1):18

    Article  Google Scholar 

  • Jeoh T, Ishizawa CI, Davis MF, Himmel ME, Adney WS, Johnson DK (2007) Cellulase digestibility of pretreated biomass is limited by cellulose accessibility. Biotechnol Bioeng 98(1):112–122

    Article  CAS  Google Scholar 

  • Kumar R, Wyman CE (2009a) Access of cellulase to cellulose and lignin for poplar solids produced by leading pretreatment technologies. Biotechnol Progr 25(3):807–819

    Article  CAS  Google Scholar 

  • Kumar R, Wyman CE (2009b) Does change in accessibility with conversion depend on both the substrate and pretreatment technology? Bioresour Technol 100(18):4193–4202

    Article  CAS  Google Scholar 

  • Kumar S, Gupta R, Lee YY, Gupta RB (2010) Cellulose pretreatment in subcritical water: effect of temperature on molecular structure and enzymatic reactivity. Bioresour Technol 101(4):1337–1347

    Article  CAS  Google Scholar 

  • Kyriacou A, Neufeld RJ, MacKenzie CR (1988) Effect of physical parameters on the adsorption characteristics of fractionated Trichoderma reesei cellulase components. Enzyme Microb Tech 10(11):675–681

    Article  CAS  Google Scholar 

  • Lamsal BP, Madl R, Tsakpunidis K (2011) Comparison of feedstock pretreatment performance and its effect on soluble sugar availability. Bioenerg Res 4(3):193–200

    Article  Google Scholar 

  • Lee D, Yu AHC, Saddler JN (1995) Evaluation of cellulase recycling strategies for the hydrolysis of lignocellulosic substrates. Biotechnol Bioeng 45(4):328–336

    Article  CAS  Google Scholar 

  • Lu Y, Yang B, Gregg D, Saddler JN, Mansfield SD (2002) Cellulase adsorption and an evaluation of enzyme recycle during hydrolysis of steam-exploded softwood residues. Appl Biochem Biotech 98–100(1):641–654

    Article  Google Scholar 

  • Lynd LR, Laser MS, Bransby D, Dale BE, Davison B, Hamilton R, Himmel M, Keller M, McMillan JD, Sheehan J, Wyman CE (2008) How biotech can transform biofuels. Nat Biotechnol 26(2):169–172

    Article  CAS  Google Scholar 

  • Margeot A, Hahn-Hägerdal B, Edlund M, Slade R, Monot F (2009) New improvements for lignocellulosic ethanol. Curr Opin Biotech 20(3):372–380

    Article  CAS  Google Scholar 

  • Meunier-Goddik L, Penner MH (1998) Enzyme-catalyzed saccharification of model celluloses in the presence of lignacious residues. J Agric Food Chem 47(1):346–351

    Article  Google Scholar 

  • Mosier N, Wyman CE, Dale BE, Elander RT, Lee YY, Holtzapple M, Ladisch MR (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96(6):673–686

    Article  CAS  Google Scholar 

  • Otter DE, Munro PA, Scott GK, Geddes R (1984) Elution of Trichoderma reesei cellulase from cellulose by pH adjustment with sodium hydroxide. Biotechnol Lett 6(6):369–374

    Article  CAS  Google Scholar 

  • Otter DE, Munro PA, Scott GK, Geddes R (1989) Desorption of Trichoderma reesei cellulase from cellulose by a range of desorbents. Biotechnol Bioeng 34(3):291–298

    Article  CAS  Google Scholar 

  • Palonen H, Tjerneld F, Zacchi G, Tenkanen M (2004) Adsorption of Trichoderma reesei CBH I and EG II and their catalytic domains on steam pretreated softwood and isolated lignin. J Biotechnol 107(1):65–72

    Article  CAS  Google Scholar 

  • Rad BL, Yazdanparast R (1998) Desorption of the cellulase systems of Trichoderma reesei and a Botrytis sp from Avicel. Biotechnol Tech 12(9):693–696

    Article  CAS  Google Scholar 

  • Ramos LP, Breuil C, Saddler JN (1993) The use of enzyme recycling and the influence of sugar accumulation on cellulose hydrolysis by Trichoderma cellulases. Enzyme Microb Tech 15(1):19–25

    Article  CAS  Google Scholar 

  • Ryu DDY, Kim C, Mandels M (1984) Competitive adsorption of cellulase components and its significance in a synergistic mechanism. Biotechnol Bioeng 26(5):488–496

    Article  CAS  Google Scholar 

  • Tu M, Chandra RP, Saddler JN (2007a) Evaluating the distribution of cellulases and the recycling of free cellulases during the hydrolysis of lignocellulosic substrates. Biotechnol Progr 23(2):398–406

    Article  CAS  Google Scholar 

  • Tu M, Chandra RP, Saddler JN (2007b) Recycling cellulases during the hydrolysis of steam exploded and ethanol pretreated lodgepole pine. Biotechnol Progr 23(5):1130–1137

    CAS  Google Scholar 

  • Tu M, Pan X, Saddler JN (2009a) Adsorption of cellulase on cellulolytic enzyme lignin from lodgepole pine. J Agric Food Chem 57(17):7771–7778

    Article  CAS  Google Scholar 

  • Tu M, Zhang X, Paice M, MacFarlane P, Saddler JN (2009b) The potential of enzyme recycling during the hydrolysis of a mixed softwood feedstock. Bioresour Technol 100(24):6407–6415

    Article  CAS  Google Scholar 

  • Xu J, Chen H (2009) Coupling recovery strategy of cellulase in hydrolyzate after hydrolysis with Tannin flocculation and PEG desorption. Appl Biochem Micro 45(3):309–312

    Article  CAS  Google Scholar 

  • Zhang YHP, Himmel ME, Mielenz JR (2006) Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 24(5):452–481

    Article  CAS  Google Scholar 

  • Zhang MJ, Wang F, Su RX, Qi W, He ZM (2010a) Ethanol production from high dry matter corncob using fed-batch simultaneous saccharification and fermentation after combined pretreatment. Bioresour Technol 101(13):4959–4964

    Article  CAS  Google Scholar 

  • Zhang MJ, Su RX, Qi W, He ZM (2010b) Enhanced enzymatic hydrolysis of lignocellulose by optimizing enzyme complexes. Appl Biochem Biotech 160(5):1407–1414

    Article  CAS  Google Scholar 

  • Zhang MJ, Su RX, Li Q, Qi W, He ZM (2011) Enzymatic saccharification of pretreated corn stover in a fed-batch membrane bioreactor. Bioenerg Res 4(2):134–140

    Article  Google Scholar 

  • Zhu Z, Sathitsuksanoh N, Vinzant T, Schell DJ, McMillan JD, Zhang YHP (2009a) Comparative study of corn stover pretreated by dilute acid and cellulose solvent-based lignocellulose fractionation: enzymatic hydrolysis, supramolecular structure, and substrate accessibility. Biotechnol Bioeng 103(4):715–724

    Article  CAS  Google Scholar 

  • Zhu Z, Sathitsuksanoh N, Zhang YHP (2009b) Direct quantitative determination of adsorbed cellulase on lignocellulosic biomass with its application to study cellulase desorption for potential recycling. Analyst 134(11):2267–2272

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial supports received from Natural Science Foundation of China (Nos. 20976130 and 20806057), Open Funding Project of the State Key Laboratory of Bioreactor Engineering, the R&D program of Tianjin New Area (2010-BK17C004), the Program for New Century Excellent Talents in Chinese University (2011), and the Program of Introducing Talents of Discipline to Universities of China (B06006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongxin Su.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, R., Su, R., Li, X. et al. Controlled adsorption of cellulase onto pretreated corncob by pH adjustment. Cellulose 19, 371–380 (2012). https://doi.org/10.1007/s10570-012-9653-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-012-9653-0

Keywords

Navigation