Skip to main content
Log in

Wine yeast typing by MALDI-TOF MS

  • Genomics, transcriptomics, proteomics
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

For the production of wine, the most important industrially used yeast species is Saccharomyces cerevisiae. Years of experience have shown that wine quality and property are significantly affected by the employed strain conducting the fermentation. Consequently, the ability of a strain level differentiation became an important requirement of modern winemaking. In our study, we showed that the differentiation by time-consuming and laborious biochemical and DNA-based methods to enable a constant beverage quality and characteristics can be replaced by matrix-assisted-laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), accompanied by the additional benefit of an application prediction. Mass fingerprints of 33 Saccharomyces strains, which are commonly used for varying wine fermentations, were generated by MALDI-TOF MS upon optimized sample preparation and instrument settings and analyzed by a cluster analysis for strain or ecotype-level differentiation. As a reference method, delta-PCR was chosen to study the genetic diversity of the employed strains. Finally, the cluster analyses of both methods were compared. It could be shown that MALDI-TOF MS, acting at proteome level, provides valuable information about the relationship between yeast strains and their application potential according to their MALDI mass fingerprint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Antonelli A, Castellari L, Zambonelli C, Carnacini A (1999) Yeast influence on volatile composition of wines. J Agric Food Chem 47(3):1139–1144

    Article  PubMed  CAS  Google Scholar 

  • Bellon JR, Eglinton JM, Siebert TE, Pollnitz AP, Rose L, de Barros LM, Chambers PJ (2011) Newly generated interspecific wine yeast hybrids introduce flavour and aroma diversity to wines. Appl Microbiol Biotechnol 91(3):603–612. doi:10.1007/s00253-011-3294-3

    Article  PubMed  CAS  Google Scholar 

  • Beltran G, Torija MJ, Novo M, Ferrer N, Poblet M, Guillamon JM, Rozes N, Mas A (2002) Analysis of yeast populations during alcoholic fermentation: a six year follow-up study. Syst Appl Microbiol 25(2):287–293

    Article  PubMed  CAS  Google Scholar 

  • Borneman AR, Desany BA, Riches D, Affourtit JP, Forgan AH, Pretorius IS, Egholm M, Chambers PJ (2012) The genome sequence of the wine yeast VIN7 reveals an allotriploid hybrid genome with Saccharomyces cerevisiae and Saccharomyces kudriavzevii origins. FEMS Yeast Res 12(1):88–96. doi:10.1111/j.1567-1364.2011.00773.x

    Article  PubMed  CAS  Google Scholar 

  • Bradbury JE, Richards KD, Niederer HA, Lee SA, Rod Dunbar P, Gardner RC (2006) A homozygous diploid subset of commercial wine yeast strains. Antonie Van Leeuwenhoek 89(1):27–37. doi:10.1007/s10482-005-9006-1

    Article  PubMed  CAS  Google Scholar 

  • Bruker Daltonik GmbH (2007) ClinProTools user manual. Version 2.2. Bremen, Germany

  • Camarasa C, Sanchez I, Brial P, Bigey F, Dequin S (2011) Phenotypic landscape of Saccharomyces cerevisiae during wine fermentation: evidence for origin-dependent metabolic traits. PLoS ONE 6(9):e25147. doi:10.1371/journal.pone.0025147

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Castellari L, Ferruzzi M, Magrini A, Giudici P, Passarelli P, Zambonelli C (1994) Unbalanced wine fermentation by cryotolerant vs. non-cryotolerant Saccharomyces strains. Vitis 33(1):49–52

    Google Scholar 

  • Chatonnet P, Dubourdieu D, Boidron J-N, Lavigne V (1993) Synthesis of volatile phenols by Saccharomyces cerevisiae in wines. J Sci Food Agric 62(2):191–202. doi:10.1002/jsfa.2740620213

    Article  CAS  Google Scholar 

  • Coetzee C, du Toit WJ (2012) A comprehensive review on Sauvignon blanc aroma with a focus on certain positive volatile thiols. Food Res Int 45(1):287–298. doi:10.1016/j.foodres.2011.09.017

    Article  CAS  Google Scholar 

  • Coloretti F, Zambonelli C, Tini V (2006) Characterization of flocculent Saccharomyces interspecific hybrids for the production of sparkling wines. Food Microbiol 23(7):672–676. doi:10.1016/j.fm.2005.11.002

    Article  PubMed  CAS  Google Scholar 

  • Czerucka D, Piche T, Rampal P (2007) Review article: yeast as probiotics—Saccharomyces boulardii. Aliment Pharmacol Ther 26(6):767–778. doi:10.1111/j.1365-2036.2007.03442.x

    Article  PubMed  CAS  Google Scholar 

  • Demuyter C, Lollier M, Legras JL, Le Jeune C (2004) Predominance of Saccharomyces uvarum during spontaneous alcoholic fermentation, for three consecutive years, in an Alsatian winery. J Appl Microbiol 97(6):1140–1148. doi:10.1111/j.1365-2672.2004.02394.x

    Article  PubMed  CAS  Google Scholar 

  • Donalies UE, Stahl U (2002) Increasing sulphite formation in Saccharomyces cerevisiae by overexpression of MET14 and SSU1. Yeast 19(6):475–484. doi:10.1002/yea.849

    Article  PubMed  CAS  Google Scholar 

  • Dunn B, Richter C, Kvitek DJ, Pugh T, Sherlock G (2012) Analysis of the Saccharomyces cerevisiae pan-genome reveals a pool of copy number variants distributed in diverse yeast strains from differing industrial environments. Genome Res 22(5):908–924. doi:10.1101/gr.130310.111

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Eschstruth A, Divol B (2011) Comparative characterization of endo-polygalacturonase (Pgu1) from Saccharomyces cerevisiae and Saccharomyces paradoxus under winemaking conditions. Appl Microbiol Biotechnol 91(3):623–634. doi:10.1007/s00253-011-3238-y

    Article  PubMed  CAS  Google Scholar 

  • Esteve-Zarzoso B, Peris-Toran MJ, Garcia-Maiquez E, Uruburu F, Querol A (2001) Yeast population dynamics during the fermentation and biological aging of sherry wines. Appl Environ Microbiol 67(5):2056–2061. doi:10.1128/AEM.67.5.2056-2061.2001

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Esteve-Zarzoso B, Fernandez-Espinar MT, Querol A (2004) Authentication and identification of Saccharomyces cerevisiae ‘flor’ yeast races involved in sherry ageing. Antonie Van Leeuwenhoek 85(2):151–158. doi:10.1023/B:ANTO.0000020282.83717.bd5144612

    Article  PubMed  CAS  Google Scholar 

  • Esteve-Zarzoso B, Hierro N, Mas A, Guillamón JM (2010) A new simplified AFLP method for wine yeast strain typing. LWT Food Sci Technol 43(10):1480–1484. doi:10.1016/j.lwt.2010.05.016

    Article  CAS  Google Scholar 

  • González SS, Barrio E, Gafner J, Querol A (2006) Natural hybrids from Saccharomyces cerevisiae, Saccharomyces bayanus and Saccharomyces kudriavzevii in wine fermentations. FEMS Yeast Res 6(8):1221–1234. doi:10.1111/j.1567-1364.2006.00126.x

    Article  PubMed  Google Scholar 

  • González SS, Gallo L, Climent MA, Barrio E, Querol A (2007) Enological characterization of natural hybrids from Saccharomyces cerevisiae and S. kudriavzevii. Int J Food Microbiol 116(1):11–18. doi:10.1016/j.ijfoodmicro.2006.10.047

    Article  PubMed  Google Scholar 

  • Jombart T (2013) A tutorial for discriminant analysis of principal components (DAPC) using adegenet 1.4-0. http://cranr-projectorg/web/packages/adegenet/vignettes/adegenet-dapcpdf

  • Jones DL (2012) The Fathom Toolbox for Matlab: multivariate ecological and oceanographic data analysis. College of Marine Science, University of South Florida, St. Petersburg

    Google Scholar 

  • Ketterlinus R, Hsieh SY, Teng SH, Lee H, Pusch W (2005) Fishing for biomarkers: analyzing mass spectrometry data with the new ClinProTools software. Biotech Suppl:37–40

  • King ES, Osidacz P, Curtin C, Bastian SEP, Francis IL (2011) Assessing desirable levels of sensory properties in Sauvignon Blanc wines—consumer preferences and contribution of key aroma compounds. Aust J Grape Wine Res 17(2):169–180. doi:10.1111/j.1755-0238.2011.00133.x

    Article  CAS  Google Scholar 

  • Lafaye A, Junot C, Pereira Y, Lagniel G, Tabet JC, Ezan E, Labarre J (2005) Combined proteome and metabolite-profiling analyses reveal surprising insights into yeast sulfur metabolism. J Biol Chem 280(26):24723–24730. doi:10.1074/jbc.M502285200

    Article  PubMed  CAS  Google Scholar 

  • Legras J-L, Karst F (2003) Optimisation of interdelta analysis for Saccharomyces cerevisiae strain characterisation. FEMS Microbiol Lett 221(2):249–255. doi:10.1016/S0378-1097(03)00205-2

    Article  PubMed  CAS  Google Scholar 

  • Legras J-L, Ruh O, Merdinoglu D, Karst F (2005) Selection of hypervariable microsatellite loci for the characterization of Saccharomyces cerevisiae strains. Int J Food Microbiol 102(1):73–83. doi:10.1016/j.ijfoodmicro.2004.12.007

    Article  PubMed  CAS  Google Scholar 

  • Legras JL, Merdinoglu D, Cornuet JM, Karst F (2007) Bread, beer and wine: Saccharomyces cerevisiae diversity reflects human history. Mol Ecol 16(10):2091–2102. doi:10.1111/j.1365-294X.2007.03266.x

    Article  PubMed  CAS  Google Scholar 

  • Libkind D, Hittinger CT, Valerio E, Gonçalves C, Dover J, Johnston M, Gonçalves P, Sampaio JP (2011) Microbe domestication and the identification of the wild genetic stock of lager-brewing yeast. Proc Natl Acad Sci U S A 108(35):14539–14544. doi:10.1073/pnas.1105430108

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lilly M, Lambrechts MG, Pretorius IS (2000) Effect of increased yeast alcohol acetyltransferase activity on flavor profiles of wine and distillates. Appl Environ Microbiol 66(2):744–753

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mantini D, Petrucci F, Pieragostino D, Del Boccio P, Sacchetta P, Candiano G, Ghiggeri GM, Lugaresi A, Federici G, Di Ilio C, Urbani A (2010) A computational platform for MALDI-TOF mass spectrometry data: application to serum and plasma samples. J Proteome 73(3):562–570

    Article  CAS  Google Scholar 

  • Marinangeli P, Angelozzi D, Ciani M, Clementi F, Mannazzu I (2004) Minisatellites in Saccharomyces cerevisiae genes encoding cell wall proteins: a new way towards wine strain characterisation. FEMS Yeast Res 4(4–5):427–435. doi:10.1016/S1567-1356(03)00172-7

    Article  PubMed  CAS  Google Scholar 

  • Marklein G, Josten M, Klanke U, Müller E, Horré R, Maier T, Wenzel T, Kostrzewa M, Bierbaum G, Hoerauf A, Sahl HG (2009) Matrix-assisted laser desorption ionization-time of flight mass spectrometry for fast and reliable identification of clinical yeast isolates. J Clin Microbiol 47(9):2912–2917

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Masneuf-Pomarède I, Le Jeune C, Durrens P, Lollier M, Aigle M, Dubourdieu D (2007) Molecular typing of wine yeast strains Saccharomyces bayanus var. uvarum using microsatellite markers. Syst Appl Microbiol 30(1):75–82. doi:10.1016/j.syapm.2006.02.006

    Article  PubMed  Google Scholar 

  • Mateo JJ, Jimenez M, Huerta T, Pastor A (1992) Comparison of volatiles produced by 4 Saccharomyces cerevisiae strains isolated from Monastrell musts. Am J Enol Vitic 43(2):206–209

    CAS  Google Scholar 

  • Moothoo-Padayachie A, Kandappa HR, Krishna SBN, Maier T, Govender P (2013) Biotyping Saccharomyces cerevisiae strains using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Eur Food Res Technol 236:351–364

    Article  CAS  Google Scholar 

  • Naumov GI, James SA, Naumova ES, Louis EJ, Roberts IN (2000a) Three new species in the Saccharomyces sensu stricto complex: Saccharomyces cariocanus. Saccharomyces kudriavzevii and Saccharomyces mikatae. Int J Syst Evol Microbiol 50(Pt 5):1931–1942

    PubMed  CAS  Google Scholar 

  • Naumov GI, Masneuf I, Naumova ES, Aigle M, Dubourdieu D (2000b) Association of Saccharomyces bayanus var. uvarum with some French wines: genetic analysis of yeast populations. Res Microbiol 151(8):683–691

    Article  PubMed  CAS  Google Scholar 

  • Naumov GI, Nguyen HV, Naumova ES, Michel A, Aigle M, Gaillardin C (2001) Genetic identification of Saccharomyces bayanus var. uvarum, a cider-fermenting yeast. Int J Food Microbiol 65(3):163–171

    Article  PubMed  CAS  Google Scholar 

  • Naumov GI, Naumova ES, Masneuf-Pomarede I (2010) Genetic identification of new biological species Saccharomyces arboricolus Wang et Bai. Antonie Van Leeuwenhoek 98(1):1–7. doi:10.1007/s10482-010-9441-5

    Article  PubMed  Google Scholar 

  • Noble AC, Bursick GF (1984) The contribution of glycerol to perceived viscosity and sweetness in white wine. Am J Enol Vitic 35(2):110–112

    CAS  Google Scholar 

  • Peris D, Lopes CA, Belloch C, Querol A, Barrio E (2012) Comparative genomics among Saccharomyces cerevisiae × Saccharomyces kudriavzevii natural hybrid strains isolated from wine and beer reveals different origins. BMC Genomics 13:407. doi:10.1186/1471-2164-13-407

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Pizarro F, Vargas FA, Agosin E (2007) A systems biology perspective of wine fermentations. Yeast 24(11):977–991. doi:10.1002/yea.1545

    Article  PubMed  CAS  Google Scholar 

  • Qian J, Cutler JE, Cole RB, Cai Y (2008) MALDI-TOF mass signatures for differentiation of yeast species, strain grouping and monitoring of morphogenesis markers. Anal Bioanal Chem 392(3):439–449

    Article  PubMed  CAS  Google Scholar 

  • Ramette A (2007) Multivariate analyses in microbial ecology. FEMS Microbiol Ecol 62(2):142–160. doi:10.1111/j.1574-6941.2007.00375.x

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rauhut D (1994) Yeasts—production of sulfur compounds. In: Fleet GH (ed) Wine microbiology and biotechnology. Harwood Academic, ChurSwitzerland, pp 183–223

    Google Scholar 

  • Remize F, Roustan JL, Sablayrolles JM, Barre P, Dequin S (1999) Glycerol overproduction by engineered Saccharomyces cerevisiae wine yeast strains leads to substantial changes in by-product formation and to a stimulation of fermentation rate in stationary phase. Appl Environ Microbiol 65(1):143–149

    PubMed Central  PubMed  CAS  Google Scholar 

  • Replansky T, Koufopanou V, Greig D, Bell G (2008) Saccharomyces sensu stricto as a model system for evolution and ecology. Trends Ecol Evol 23(9):494–501. doi:10.1016/j.tree.2008.05.005

    Article  PubMed  Google Scholar 

  • Richter CL, Dunn B, Sherlock G, Pugh T (2013) Comparative metabolic footprinting of a large number of commercial wine yeast strains in Chardonnay fermentations. FEMS Yeast Res 13(4):394–410. doi:10.1111/1567-1364.12046

    Article  PubMed  CAS  Google Scholar 

  • Sandrin TR, Goldstein JE, Schumaker S (2013) MALDI TOF MS profiling of bacteria at the strain level: a review. Mass Spectrom Rev 32(3):188–217. doi:10.1002/mas.21359

    Article  PubMed  CAS  Google Scholar 

  • Schuller D, Valero E, Dequin S, Casal M (2004) Survey of molecular methods for the typing of wine yeast strains. FEMS Microbiol Lett 231(1):19–26. doi:10.1016/S0378-1097(03)00928-5

    Article  PubMed  CAS  Google Scholar 

  • Shimazu Y, Watanabe M (1981) Effects of yeast strains and environmental conditions on formation of organic acids in must during fermentation: studies on organic acids in grape must and wine (III). J Ferment Technol 59(1):27–32

    CAS  Google Scholar 

  • Shinohara T, Kubodera S, Yanagida F (2000) Distribution of phenolic yeasts and production of phenolic off-flavors in wine fermentation. J Biosci Bioeng 90(1):90–97. doi:10.1016/S1389-1723(00)80040-7

    PubMed  CAS  Google Scholar 

  • Sipiczki M (2008) Interspecies hybridization and recombination in Saccharomyces wine yeasts. FEMS Yeast Res 8(7):996–1007. doi:10.1111/j.1567-1364.2008.00369.x

    Article  PubMed  CAS  Google Scholar 

  • Sogawa K, Watanabe M, Sato K, Segawa S, Ishii C, Miyabe A, Murata S, Saito T, Nomura F (2011) Use of the MALDI BioTyper system with MALDI-TOF mass spectrometry for rapid identification of microorganisms. Anal Bioanal Chem 400(7):1905–1911

    Article  PubMed  CAS  Google Scholar 

  • Subileau M, Schneider R, Salmon JM, Degryse E (2008) New insights on 3-mercaptohexanol (3MH) biogenesis in Sauvignon Blanc wines: Cys-3MH and (E)-hexen-2-al are not the major precursors. J Agric Food Chem 56(19):9230–9235. doi:10.1021/jf801626f

    Article  PubMed  CAS  Google Scholar 

  • Swiegers JH, Pretorius IS (2007) Modulation of volatile sulfur compounds by wine yeast. Appl Microbiol Biotechnol 74(5):954–960. doi:10.1007/s00253-006-0828-1

    Article  PubMed  CAS  Google Scholar 

  • Swiegers JH, Willmott R, Hill-Ling A, Capone DL, Pardon KH, Elsey GM, Howell KS, de Barros Lopes MA, Sefton MA, Lilly M, Pretorius IS (2006) Modulation of volatile thiol and ester aromas by modified wine yeast. In: Wender LPB, Mikael Agerlin P (eds) Developments in food sciences, vol 43, Elsevier. Oxford, UK, pp 113–116

    Google Scholar 

  • Swiegers JH, Kievit RL, Siebert T, Lattey KA, Bramley BR, Francis IL, King ES, Pretorius IS (2009) The influence of yeast on the aroma of Sauvignon Blanc wine. Food Microbiol 26(2):204–211. doi:10.1016/j.fm.2008.08.004

    Article  PubMed  CAS  Google Scholar 

  • Team RDC (2011) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Thibon C, Marullo P, Claisse O, Cullin C, Dubourdieu D, Tominaga T (2008) Nitrogen catabolic repression controls the release of volatile thiols by Saccharomyces cerevisiae during wine fermentation. FEMS Yeast Res 8(7):1076–1086. doi:10.1111/j.1567-1364.2008.00381.x

    Article  PubMed  CAS  Google Scholar 

  • Torija MJ, Beltran G, Novo M, Poblet M, Guillamon JM, Mas A, Rozes N (2003) Effects of fermentation temperature and Saccharomyces species on the cell fatty acid composition and presence of volatile compounds in wine. Int J Food Microbiol 85(1–2):127–136

    Article  PubMed  CAS  Google Scholar 

  • Tornai-Lehoczki J, Dlauchy D (2000) Delimination of brewing yeast strains using different molecular techniques. Int J Food Microbiol 62(1–2):37–45

    Article  PubMed  CAS  Google Scholar 

  • Usbeck JC, Kern CC, Vogel RF, Behr J (2013) Optimization of experimental and modelling parameters for the differentiation of beverage spoiling yeasts by Matrix-Assisted-Laser-Desorption/Ionization–Time-of-Flight Mass Spectrometry (MALDI–TOF MS) in response to varying growth conditions. Food Microbiol 36(2):379–387. doi:10.1016/j.fm.2013.07.004

    Article  PubMed  CAS  Google Scholar 

  • van Veen SQ, Claas EC, Kuijper EJ (2010) High-throughput identification of bacteria and yeast by matrix-assisted laser desorption ionization-time of flight mass spectrometry in conventional medical microbiology laboratories. J Clin Microbiol 48(3):900–907. doi:10.1128/JCM.02071-09

    Article  PubMed Central  PubMed  Google Scholar 

  • Vaughan-Martini A, Martini A (1870) Saccharomyces Meyen ex Reess. In: Kurtzman C, Fell JW, Boekhout T (eds) The yeast: a taxonomic study, 5th edn. Elsevier, London

    Google Scholar 

  • Wang SA, Bai FY (2008) Saccharomyces arboricolus sp. nov., a yeast species from tree bark. Int J Syst Evol Microbiol 58(2):510–514. doi:10.1099/ijs.0.65331-0

    Article  PubMed  CAS  Google Scholar 

  • Wightman P, Quain DE, Meaden PG (1996) Analysis of production brewing strains of yeast by DNA fingerprint. Lett Appl Microbiol 22(1):90–94

    Google Scholar 

  • Zambonelli C, Passarelli P, Rainieri S, Bertolini L, Giudici P, Castellari L (1997) Technological properties and temperature response of interspecific Saccharomyces hybrids. J Sci Food Agric 74(1):7–12. doi:10.1002/(sici)1097-0010(199705)74:1<7::aid-jsfa753>3.0.co;2-x

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Part of this work was funded by the German Ministry of Economics and Technology and the Wifö (Wissenschaftsförderung der Deutschen Brauwirtschaft e.V., Berlin, Germany) in project AiF 16576 N. We would like to thank Forbes R. Wardrop and Anne Ortiz-Julien for their assistance in strain selection and critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Behr.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 413 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Usbeck, J.C., Wilde, C., Bertrand, D. et al. Wine yeast typing by MALDI-TOF MS. Appl Microbiol Biotechnol 98, 3737–3752 (2014). https://doi.org/10.1007/s00253-014-5586-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5586-x

Keywords

Navigation