Skip to main content
Log in

A review on recent developments in mass spectrometry instrumentation and quantitative tools advancing bacterial proteomics

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Proteomics has evolved substantially since its early days, some 20 years ago. In this mini-review, we aim to provide an overview of general methodologies and more recent developments in mass spectrometric approaches used for relative and absolute quantitation of proteins. Enhancement of sensitivity of the mass spectrometers as well as improved sample preparation and protein fractionation methods are resulting in a more comprehensive analysis of proteomes. We also document some upcoming trends for quantitative proteomics such as the use of label-free quantification methods. Hopefully, microbiologists will continue to explore proteomics as a tool in their research to understand the adaptation of microorganisms to their ever changing environment. We encourage them to incorporate some of the described new developments in mass spectrometry to facilitate their analyses and improve the general knowledge of the fascinating world of microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abram F, Gunnigle E, O’Flaherty V (2009) Optimisation of protein extraction and 2-DE for metaproteomics of microbial communities from anaerobic wastewater treatment biofilms. Electrophoresis 30:4149–4151

    Article  CAS  Google Scholar 

  • Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422:198–207

    Article  CAS  Google Scholar 

  • Altelaar AFM, Frese CK, Preisinger C, Hennrich ML, Schram AW, Timmers HTM, Heck AJR, Mohammed S (2012) Benchmarking stable isotope labeling based quantitative proteomics. J Proteomics. doi:10.1016/j.jprot.2012.10.009

    Google Scholar 

  • America AH, Cordewener JH (2008) Comparative LC-MS: a landscape of peaks and valleys. Proteomics 8:731–749

    Article  CAS  Google Scholar 

  • Anderson NL, Anderson NG (1998) Proteome and proteomics: new technologies, new concepts, and new words. Electrophoresis 19:1853–1861

    Article  CAS  Google Scholar 

  • Andrews GL, Simons BG, Bryce Young J, Hawkridge AM, Muddiman DC (2011) Performance characteristics of a new hybrid quadrupole time-of-flight tandem mass spectrometer (TripleTOF 5600). Anal Chem 83:5442–5446

    Article  CAS  Google Scholar 

  • Armengaud J (2012) Microbiology and proteomics, getting the best of both worlds! Environ Microbiol. doi:10.1111/j.1462-2920.2012.02811.x

    Google Scholar 

  • Asara JM, Christofk HR, Freimark LM, Cantley LC (2008) A label-free quantification method by MS/MS TIC compared to SILAC and spectral counting in a proteomics screen. Proteomics 8:994–999

    Article  CAS  Google Scholar 

  • Bantscheff M, Schirle M, Sweetman G, Rick J, Kuster B (2007) Quantitative mass spectrometry in proteomics: a critical review. Anal Bioanal Chem 389:1017–1031

    Article  CAS  Google Scholar 

  • Bateman RH, Carruthers R, Hoyes JB, Jones C, Langridge JI, Millar A, Vissers JP (2002) A novel precursor ion discovery method on a hybrid quadrupole orthogonal acceleration time-of-flight (Q-TOF) mass spectrometer for studying protein phosphorylation. J Am Soc Mass Spectrom 13:792–803

    Article  CAS  Google Scholar 

  • Bensi G, Mora M, Tuscano G, Biagini M, Chiarot E, Bombaci M, Capo S, Falugi F, Manetti AG, Donato P, Swennen E, Gallotta M, Garibaldi M, Pinto V, Chiappini N, Musser JM, Janulczyk R, Mariani M, Scarselli M, Telford JL, Grifantini R, Norais N, Margarit I, Grandi G (2012) Multi high-throughput approach for highly selective identification of vaccine candidates: the group A Streptococcus case. Mol Cell Proteomics 11:M111.015693

    Article  CAS  Google Scholar 

  • Beynon RJ, Doherty MK, Pratt JM, Gaskell SJ (2005) Multiplexed absolute quantification in proteomics using artificial QCAT proteins of concatenated signature peptides. Nat Methods 2:587–589

    Article  CAS  Google Scholar 

  • Bhaduri S, Demchick PH (1983) Simple and rapid method for disruption of bacteria for protein studies. Appl Environ Microbiol 46:941–943

    CAS  Google Scholar 

  • Blackburn K, Mbeunkui F, Mitra SK, Mentzel T, Goshe MB (2010) Improving protein and proteome coverage through data-independent multiplexed peptide fragmentation. J Proteome Res 9:3621–3637

    Article  CAS  Google Scholar 

  • Blaze MTM, Aydin B, Carlson RP, Hanley L (2012) Identification and imaging of peptides and proteins on Enterococcus faecalis biofilms by matrix assisted laser desorption ionization mass spectrometry. Analyst 137:5018–5025

    Article  CAS  Google Scholar 

  • Boersema PJ, Raijmakers R, Lemeer S, Mohammed S, Heck AJR (2009) Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nat Protoc 4:484–494

    Article  CAS  Google Scholar 

  • Bondarenko PV, Chelius D, Shaler TA (2002) Identification and relative quantitation of protein mixtures by enzymatic digestion followed by capillary reversed-phase liquid chromatography-tandem mass spectrometry. Anal Chem 74:4741–4749

    Article  CAS  Google Scholar 

  • Brun V, Dupuis A, Adrait A, Marcellin M, Thomas D, Court M, Vandenesch F, Garin J (2007) Isotope-labeled protein standards : towards absolute quantitative proteomics. Mol Cell Proteomics 6:2139–2149

    Article  CAS  Google Scholar 

  • Brun V, Masselon C, Garin J, Dupuis A (2009) Isotope dilution strategies for absolute quantitative proteomics. J Proteomics 72:740–749

    Article  CAS  Google Scholar 

  • Bunai K, Nozaki M, Kakeshita H, Nemoto T, Yamane K (2005) Quantification of de novo localized 15N-labeled lipoproteins and membrane proteins having one and two transmembrane segments in a Bacillus subtilis secA temperature-sensitive mutant using 2D-PAGE and MALDI-TOF MS. J Prot Res 4:826–836

    Article  CAS  Google Scholar 

  • Cañas B, Piñeiro C, Calvo E, López-Ferrer D, Gallardo JM (2007) Trends in sample preparation for classical and second generation proteomics. J Chromatogr A 1153:235–258

    Article  CAS  Google Scholar 

  • Chakraborty AB, Berger SJ, Gebler JC (2007) Use of an integrated MS-multiplexed MS/MS data acquisition strategy for high-coverage peptide mapping studies. Rapid commun mass spectrom 21:730–744

    Article  CAS  Google Scholar 

  • Cham Mead JA, Bianco L, Bessant C (2010) Free computational resources for designing selected reaction monitoring transitions. Proteomics 10:1106–1126

    Article  CAS  Google Scholar 

  • Chelius D, Bondarenko PV (2002) Quantitative profiling of proteins in complex mixtures using liquid chromatography and mass spectrometry. J Proteome Res 1:317–323

    Article  CAS  Google Scholar 

  • Chen EI, Cociorva D, Norris JL, Yates JR III (2007) Optimization of mass spectrometry-compatible surfactants for shotgun proteomics. J Proteome Res 6:2529–2538

    Article  CAS  Google Scholar 

  • Cordwell SJ, Nouwens AS, Walsh BJ (2001) Comparative proteomics of bacterial pathogens. Proteomics 1:461–472

    Article  CAS  Google Scholar 

  • Cox DM, Zhong F, Du M, Duchoslav E, Sakuma T, McDermott JC (2005) Multiple reaction monitoring as a method for identifying protein posttranslational modifications. J Biomol Tech 16:83–90

    Google Scholar 

  • de Souza GA, Målen H, Søfteland T, Sælensminde G, Prasad S, Jonassen I, Wiker HG (2008) High accuracy mass spectrometry analysis as a tool to verify and improve gene annotation using Mycobacterium tuberculosis as an example. BMC Genomics 9:316. doi:10.1186/1471-2164-9-316

    Article  CAS  Google Scholar 

  • de Villiers A, Lestremau F, Szucs R, Gélébart S, David F, Sandra P (2006) Evaluation of ultra performance liquid chromatography. Part I. Possibilities and limitations. J Chromatogr A 1127:60–69

    Article  CAS  Google Scholar 

  • Doherty MK, Whitfield PD (2011) Proteomics moves from expression to turnover: update and future perspective. Expert Rev Proteomics 8:325–334

    Article  Google Scholar 

  • Domon B, Aebersold R (2006) Mass spectrometry and protein analysis. Science 312:212–217

    Article  CAS  Google Scholar 

  • Domon B, Aebersold R (2010) Options and considerations when selecting a quantitative proteomics strategy. Nat Biotechnol 28:710–721

    Article  CAS  Google Scholar 

  • Dowell JA, Frost DC, Zhang J, Li L (2008) Comparison of two-dimensional fractionation techniques for shotgun proteomics. Anal Chem 80:6715–6723

    Article  CAS  Google Scholar 

  • Dupuis A, Hennekinne JA, Garin J, Brun V (2008) Protein Standard Absolute Quantification (PSAQ) for improved investigation of staphylococcal food poisoning outbreaks. Proteomics 8:4633–4636

    Article  CAS  Google Scholar 

  • Eeltink S, Dolman S, Detobel F, Swart R, Ursem M, Schoenmakers PJ (2010) High-efficiency liquid chromatography-mass spectrometry separations with 50 mm, 250 mm, and 1 m long polymer-based monolithic capillary columns for the characterization of complex proteolytic digests. J Chromatogr A 1217:6610–6615

    Article  CAS  Google Scholar 

  • Evans C, Noirel J, Ow SY, Salim M, Pereira-Medrano AG, Couto N, Pandhal J, Smith D, Pham TK, Karunakaran E, Zou X, Biggs CA, Wright PC (2012) An insight into iTRAQ: where do we stand now? Anal Bioanal Chem 404:1011–1027

    Article  CAS  Google Scholar 

  • Fischer F, Wolters D, Rögner M, Poetsch A (2006) Toward the complete membrane proteome: high coverage of integral membrane proteins through transmembrane peptide detection. Mol Cell Proteomics 5:444–453

    CAS  Google Scholar 

  • Fournier PE, Raoult D (2011) Prospects for the future using genomics and proteomics in clinical microbiology. Annu Rev Microbiol 65:169–188

    Article  CAS  Google Scholar 

  • Geiger T, Cox J, Mann M (2010a) Proteomics on an Orbitrap benchtop mass spectrometer using all-ion fragmentation. Mol Cell Proteomics 9:2252–2261

    Article  CAS  Google Scholar 

  • Geiger T, Cox J, Ostasiewicz P, Wisniewski JR, Mann M (2010b) Super-SILAC mix for quantitative proteomics of human tumor tissue. Nat Methods 7:383–385

    Article  CAS  Google Scholar 

  • Geiger T, Wisniewski JR, Cox J, Zanivan S, Kruger M, Ishihama Y, Mann M (2011) Use of stable isotope labeling by amino acids in cell culture as a spike-in standard in quantitative proteomics. Nat Protoc 6:147–157

    Article  CAS  Google Scholar 

  • Gerber SA, Rush J, Stemman O, Kirschner MW, Gygi SP (2003) Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc Natl Acad Sci U S A 100:6940–6945

    Article  CAS  Google Scholar 

  • Geromanos SJ, Vissers JP, Silva JC, Dorschel CA, Li GZ, Gorenstein MV, Bateman RH, Langridge JI (2009) The detection, correlation, and comparison of peptide precursor and product ions from data independent LC-MS with data dependant LC-MS/MS. Proteomics 9:1683–1695

    Article  CAS  Google Scholar 

  • Gilar M, Olivova P, Daly AE, Gebler JC (2005a) Orthogonality of separation in two-dimensional liquid chromatography. Anal Chem 77:6426–6434

    Article  CAS  Google Scholar 

  • Gilar M, Olivova P, Daly AE, Gebler JC (2005b) Two-dimensional separation of peptides using RP-RP-HPLC system with different pH in first and second separation dimensions. J Sep Sci 28:1694–1703

    Article  CAS  Google Scholar 

  • Gillet LC, Navarro P, Tate S, Röst H, Selevsek N, Reiter L, Bonner R, Aebersold R (2012) Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics 11(O111):016717. doi:10.1074/mcp.O111.016717

    Google Scholar 

  • Goshe MB, Smith RD (2003) Stable isotope-coded proteomic mass spectrometry. Curr Opin Biotechnol 14:101–109

    Article  CAS  Google Scholar 

  • Graham RLJ, Graham C, McMullan G (2007) Microbial proteomics: a mass spectrometry primer for biologists. Microb Cell Fact 6:26. doi:10.1186/1475-2859-6-26

    Article  CAS  Google Scholar 

  • Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nature Biotechnol 17:994–999

    Article  CAS  Google Scholar 

  • Hahne H, Wolff S, Hecker M, Becher D (2008) From complementarity to comprehensiveness—targeting the membrane proteome of growing Bacillus subtilis by divergent approaches. Proteomics 8:4123–4136

    Article  CAS  Google Scholar 

  • Herbert BR, Grinyer J, McCarthy JT, Isaacs M, Harry EJ, Nevalainen H, Traini MD, Hunt S, Schulz B, Laver M, Goodall AR, Packer J, Harry JL, Williams KL (2006) Improved 2-DE of microorganisms after acidic extraction. Electrophoresis 27:1630–1640

    Article  CAS  Google Scholar 

  • Hettich RL, Sharma R, Chourey K, Giannone RJ (2012) Microbial metaproteomics: identifying the repertoire of proteins that microorganisms use to compete and cooperate in complex environmental communities. Curr Opin Microbiol 15:373–380

    Article  CAS  Google Scholar 

  • Horie K, Sato Y, Kimura T, Nakamura T, Ishihama Y, Oda Y, Ikegami T, Tanaka N (2012) Estimation and optimization of the peak capacity of one-dimensional gradient high performance liquid chromatography using a long monolithic silica capillary column. J Chromatogr A 1228:283–291

    Article  CAS  Google Scholar 

  • Horvatovich P, Hoekman B, Govorukhina N, Bischoff R (2010) Multidimensional chromatography coupled to mass spectrometry in analysing complex proteomics samples. J Sep Sci 33:1421–1437

    Article  CAS  Google Scholar 

  • Hsu JL, Huang SY, Chow NH, Chen SH (2003) Stable-isotope dimethyl labeling for quantitative proteomics. Anal Chem 75:6843–6852

    Article  CAS  Google Scholar 

  • Hu Q, Noll RJ, Li H, Makarov A, Hardman M, Cooks RG (2005) The Orbitrap: a new mass spectrometer. J Mass Spectrom 40:430–443

    Article  CAS  Google Scholar 

  • Impens F, Colaert N, Helsens K, Ghesquière B, Timmerman E, De Bock PJ, Chain BM, Vandekerckhove J, Gevaert K (2010) A quantitative proteomics design for systematic identification of protease cleavage events. Mol Cell Proteomics 9:2327–2333

    Article  CAS  Google Scholar 

  • Ishihama Y, Oda Y, Tabata T, Sato T, Nagasu T, Rappsilber J, Mann M (2005) Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol Cell Proteomics 4:1265–1272

    Article  CAS  Google Scholar 

  • Iwasaki M, Miwa S, Ikegami T, Tomita M, Tanaka N, Ishihama Y (2010) One-dimensional capillary liquid chromatographic separation coupled with tandem mass spectrometry unveils the Escherichia coli proteome on a microarray scale. Anal Chem 82:2616–2620

    Article  CAS  Google Scholar 

  • Kiyonami R, Schoen A, Prakash A, Peterman S, Zabrouskov V, Picotti P, Aebersold R, Huhmer A, Domon B (2011) Increased selectivity, analytical precision, and throughput in targeted proteomics. Mol Cell Proteomics 10(M110):002931. doi:10.1074/mcp.M110.002931-1

    Google Scholar 

  • Lacerda CM, Reardon KF (2009) Environmental proteomics: applications of proteome profiling in environmental microbiology and biotechnology. Brief Funct Genomic Proteomic 8:75–87

    Article  CAS  Google Scholar 

  • Lasaosa M, Delmotte N, Huber CG, Melchior K, Heinzle E, Tholey A (2009) A 2D reversed-phase x ion-pair reversed-phase HPLC-MALDI TOF/TOF-MS approach for shotgun proteome analysis. Anal Bioanal Chem 393:1245–1256

    Article  CAS  Google Scholar 

  • Leroy B, Rosier C, Erculisse V, Leys N, Mergeay M, Wattiez R (2010) Differential proteomic analysis using isotope-coded protein-labeling strategies: comparison, improvements and application to simulated microgravity effect on Cupriavidus metallidurans CH34. Proteomics 10:2281–2291

    Article  CAS  Google Scholar 

  • Levin Y, Hradetzky E, Bahn S (2011) Quantification of proteins using data-independent analysis (MSE) in simple andcomplex samples: a systematic evaluation. Proteomics 11:3273–3287

    Article  CAS  Google Scholar 

  • Li GZ, Vissers JP, Silva JC, Golick D, Gorenstein MV, Geromanos SJ (2009) Database searching and accounting of multiplexed precursor and product ion spectra from the data independent analysis of simple and complex peptide mixtures. Proteomics 9:1696–1719

    Article  CAS  Google Scholar 

  • Li Z, Adams RM, Chourey K, Hurst GB, Hettich RL, Pan C (2012) Systematic comparison of label-free, metabolic labeling, and isobaric chemical labeling for quantitative proteomics on LTQ Orbitrap Velos. J Proteome Res 11:1582–1590

    Article  CAS  Google Scholar 

  • Liu H, Sadygov RG, Yates JR III (2004) A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal Chem 76:4193–4201

    Article  CAS  Google Scholar 

  • Lu P, Vogel C, Wang R, Yao X, Marcotte EM (2007) Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation. Nature Biotechnol 25:117–124

    Article  CAS  Google Scholar 

  • Lundgren DH, Hwang SI, Wu L, Han DK (2010) Role of spectral counting in quantitative proteomics. Expert Rev Proteomics 7:39–53

    Article  CAS  Google Scholar 

  • Luo Q, Page JS, Tang K, Smith RD (2007) MicroSPE-nanoLC-ESI-MS/MS using 10-μm-i.d. silica-based monolithic columns for proteomics. Anal Chem 79:540–545

    Article  CAS  Google Scholar 

  • Malmström J, Beck M, Schmidt A, Lange V, Deutsch EW, Aebersold R (2009) Proteome-wide cellular protein concentration of the human pathogen Leptospira interrogans. Nature 460:762–765

    Article  CAS  Google Scholar 

  • Mead JA, Bianco L, Bessant C (2009) Recent developments in public proteomic MS repositories and pipelines. Proteomics 9:861–881

    Article  CAS  Google Scholar 

  • Michalski A, Cox J, Mann M (2011a) More than 100,000 detectable peptide species elute in single shotgun proteomics runs but the majority is inaccessible to data-dependent LC-MS/MS. J Proteome Res 10:1785–1793

    Article  CAS  Google Scholar 

  • Michalski A, Damoc E, Hauschild JP, Lange O, Wieghaus A, Makarov A, Nagaraj N, Cox J, Mann M, Horning S (2011b) Mass spectrometry-based proteomics using Q Exactive, a high-performance benchtop quadrupole Orbitrap mass spectrometer. Mol Cell Proteomics 10:M111.011015

    Article  Google Scholar 

  • Motoyama A, Yates JR III (2008) Multidimensional LC separations in shotgun proteomics. Anal Chem 80:7187–7193

    Article  CAS  Google Scholar 

  • Nakamura T, Kuromitsu J, Oda Y (2008) Evaluation of comprehensive multidimensional separations using reversed-phase, reversed-phase liquid chromatography/mass spectrometry for shotgun proteomics. J Proteome Res 7:1007–1011

    Article  CAS  Google Scholar 

  • Neilson KA, Ali NA, Muralidharan S, Mirzaei M, Mariani M, Assadourian G, Lee A, van Sluyter SC, Haynes PA (2011) Less label, more free: approaches in label-free quantitative mass spectrometry. Proteomics 11:535–553

    Article  CAS  Google Scholar 

  • Nilsson CL, Davidsson P (2000) New separation tools for comprehensive studies of protein expression by mass spectrometry. Mass Spectrom Rev 19:390–397

    Article  CAS  Google Scholar 

  • Norling B, Zak E, Andersson B, Pakrasi H (1998) 2D-isolation of pure plasma and thylakoid membranes from the cyanobacterium Synechocystis sp. PCC 6803. FEBS Lett 436:189–192

    Article  CAS  Google Scholar 

  • Oda Y, Huang K, Cross FR, Cowburn D, Chait BT (1999) Accurate quantitation of protein expression and site-specific phosphorylation. Proc Natl Acad Sci U S A 96:6591–6596

    Article  CAS  Google Scholar 

  • Olsen JV, Schwartz JC, Griep-Raming J, Nielsen ML, Damoc E, Denisov E, Lange O, Remes P, Taylor D, Splendore M, Wouters ER, Senko M, Makarov A, Mann M, Horning S (2009) A dual pressure linear ion trap Orbitrap instrument with very high sequencing speed. Mol Cell Proteomics 8:2759–2769

    Article  CAS  Google Scholar 

  • Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1:376–386

    Article  CAS  Google Scholar 

  • Ong SE, Mann M (2005) Mass spectrometry-based proteomics turns quantitative. Nat Chem Biol 1:252–262

    Article  CAS  Google Scholar 

  • Otto A, Bernhardt J, Hecker M, Becher D (2012) Global relative and absolute quantitation in microbial proteomics. Curr Opin Microbiol 15:364–372

    Article  CAS  Google Scholar 

  • Panchaud A, Scherl A, Shaffer SA, von Haller PD, Kulasekara HD, Miller SI, Goodlett DR (2009) Precursor acquisition independent from ion count: how to dive deeper into the proteomics ocean. Anal Chem 81:6481–6488

    Article  CAS  Google Scholar 

  • Patel KD, Jerkovich AD, Link JC, Jorgenson JW (2004) In-depth characterization of slurry packed capillary columns with 1.0-μm nonporous particles using reversed-phase isocratic ultrahigh-pressure liquid chromatography. Anal Chem 76:5777–5786

    Article  CAS  Google Scholar 

  • Patel NA, Crombie A, Slade SE, Thalassinos K, Hughes C, Connolly JB, Langridge J, Murrell JC, Scrivens JH (2012) Comparison of one- and two-dimensional liquid chromatography approaches in the label-free quantitative analysis of Methylocella silvestris. J Proteome Res 11:4755–4763

    Article  CAS  Google Scholar 

  • Patel VJ, Thalassinos K, Slade SE, Connolly JB, Crombie A, Murrell JC, Scrivens JH (2009) A comparison of labeling and label-free mass spectrometry-based proteomics approaches. J Proteome Res 8:3752–3759

    Article  CAS  Google Scholar 

  • Phillips NJ, Steichen CT, Schilling B, Post DM, Niles RK, Bair TB, Falsetta ML, Apicella MA, Gibson BW (2012) Proteomic analysis of Neisseria gonorrhoeae biofilms shows shift to anaerobic respiration and changes in nutrient transport and outer membrane proteins. PLOS One 7(6):e38303

    Article  CAS  Google Scholar 

  • Picotti P, Aebersold R (2012) Selected reaction monitoring-based proteomics: workflows, potential, pitfalls and future directions. Nat Methods 9:555–566

    Article  CAS  Google Scholar 

  • Podwojski K, Eisenacher M, Kohl M, Turewicz M, Meyer HE, Rahnenführer J, Stephan C (2010) Peek a peak: a glance at statistics for quantitative label-free proteomics. Expert Rev Proteomics 7:249–261

    Article  CAS  Google Scholar 

  • Poetsch A, Wolters D (2008) Bacterial membrane proteomics. Proteomics 8:4100–4122

    Article  CAS  Google Scholar 

  • Purvine S, Eppel JT, Yi EC, Goodlett DR (2003) Shotgun collision-induced dissociation of peptides using a time of flight mass analyzer. Proteomics 3:847–850

    Article  CAS  Google Scholar 

  • Rao PK, Marcela Rodriguez G, Smith I, Li Q (2008) Protein dynamics in iron-starved Mycobacterium tuberculosis revealed by turnover and abundance measurement using hybrid-linear ion trap-Fourier transform mass spectrometry. Anal Chem 80:6860–6869

    Article  CAS  Google Scholar 

  • Rappsilber J, Ryder U, Lamond AI, Mann M (2002) Large-scale proteomic analysis of the human spliceosome. Genome Res 12:1231–1245

    Article  CAS  Google Scholar 

  • Richardson K, Denny R, Hughes C, Skilling J, Sikora J, Dadlez M, Manteca A, Jung HR, Jensen ON, Redeker V, Melki R, Langridge JI, Vissers JPC (2012) A probabilistic framework for peptide and protein quantification from data-dependent and data-independent LC-MS proteomics experiments. OMICS 16:468–482

    Article  CAS  Google Scholar 

  • Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, Bartlet-Jones M, He F, Jacobson A, Pappin DJ (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3:1154–1169

    Article  CAS  Google Scholar 

  • Rozenbrand J, de Jong GJ, van Bennekom WP (2011) Comparison of monolithic and 1.8-μm RP-18 silica capillary columns using chromatographic data and mass spectrometric identification scores for proteins. J Sep Sci 34:2199–2205

    CAS  Google Scholar 

  • Sandra K, Moshir M, D’hondt F, Verleysen K, Kas K, Sandra P (2008) Highly efficient peptide separations in proteomics Part 1. Unidimensional high performance liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 866:48–63

    Article  CAS  Google Scholar 

  • Schmidt A, Kellermann J, Lottspeich F (2005) A novel strategy for quantitative proteomics using isotope-coded protein labels. Proteomics 5:4–15

    Article  CAS  Google Scholar 

  • Schmidt A, Beck M, Malmström J, Lam H, Claassen M, Campbell D, Aebersold R (2011) Absolute quantification of microbial proteomes at different states by directed mass spectrometry. Mol Syst Biol 7:510. doi:10.1038/msb.2011.37

    Article  CAS  Google Scholar 

  • Schwanhäusser B, Gossen M, Dittmar G, Selbach M (2009) Global analysis of cellular protein translation by pulsed SILAC. Proteomics 9:205–209

    Article  CAS  Google Scholar 

  • Sethuraman M, McComb ME, Heibeck T, Costello CE, Cohen RA (2004) Isotope-coded affinity tag approach to identify and quantify oxidant-sensitive protein thiols. Mol Cellul Prot 3:273–278

    Article  CAS  Google Scholar 

  • Shi Y, Xiang R, Horváth C, Wilkins JA (2004) The role of liquid chromatography in proteomics. J Chromatogr A 1053:27–36

    CAS  Google Scholar 

  • Silva JC, Denny R, Dorschel CA, Gorenstein M, Kass IJ, Li GZ, McKenna T, Nold MJ, Richardson K, Young P, Geromanos S (2005) Quantitative proteomic analysis by accurate mass retention time pairs. Anal Chem 77:2187–2200

    Article  CAS  Google Scholar 

  • Silva JC, Denny R, Dorschel C, Gorenstein MV, Li GZ, Richardson K, Wall D, Geromanos SJ (2006a) Simultaneous qualitative and quantitative analysis of the Escherichia coli proteome: a sweet tale. Mol Cell Proteomics 5:589–607

    CAS  Google Scholar 

  • Silva JC, Gorenstein MV, Li GZ, Vissers JPC, Geromanos SJ (2006b) Absolute quantification of proteins by LCMSE: a virtue of parallel MS acquisition. Mol Cell Proteomics 5:144–156

    CAS  Google Scholar 

  • Simpson DM, Beynon RJ (2012) QconCATs: design and expression of concatenated protein standards for multiplexed protein quantification. Anal Bioanal Chem 404:977–989

    Article  CAS  Google Scholar 

  • Sommer U, Petersen J, Pfeiffer M, Schrotz-King P, Morsczeck C (2010) Comparison of surface proteomes of enterotoxigenic (ETEC) and commensal Escherichia coli strains. J Microbiol Methods 83:13–19

    Article  CAS  Google Scholar 

  • Soufi B, Kumar C, Gnad F, Mann M, Mijakovic I, Macek B (2010) Stable isotope labeling by amino acids in cell culture (SILAC) applied to quantitative proteomics of Bacillus subtilis. J Proteome Res 9:3638–3646

    Article  CAS  Google Scholar 

  • Syka JEP, Coon JJ, Schroeder MJ, Shabanowitz J, Hunt DF (2004) Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc Natl Acad Sci U S A 101:9528–9533

    Article  CAS  Google Scholar 

  • Taylor CF, Paton NW, Lilley KS, Binz PA, Julian RK, Jones AR, Zhu W, Apweiler R, Aebersold R, Deutsch EW, Dunn MJ, Heck AJR, Leitner A, Macht M, Mann M, Martens L, Neubert TA, Patterson SD, Ping P, Seymour SL, Souda P, Tsugita A, Vandekerckhove J, Vondriska TM, Whitelegge JP, Wilkins MR, Xenarios I, Yates JR III, Hermjakob H (2007) The minimum information about a proteomics experiment (MIAPE). Nat Biotechnol 25:887–893

    Article  CAS  Google Scholar 

  • Thein M, Sauer G, Paramasivam N, Grin I, Linke D (2010) Efficient subfractionation of Gram-negative bacteria for proteomics studies. J Proteome Res 9:6135–6147

    Article  CAS  Google Scholar 

  • Thelen JJ, Miernyk JA (2012) The proteomic future: where mass spectrometry should be taking us. Biochem J 444:169–181

    Article  CAS  Google Scholar 

  • Thompson A, Schäfer J, Kuhn K, Kienle S, Schwarz J, Schmidt G, Neumann T, Johnstone R, Mohammed AK, Hamon C (2003) Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem 75:1895–1904

    Article  CAS  Google Scholar 

  • Ting L, Rad R, Gygi SP, Haas W (2011) MS3 eliminates ratio distortion in isobaric labeling-based multiplexed quantitative proteomics. Nat Methods 8:937–940

    Article  CAS  Google Scholar 

  • Valentine SJ, Ewing MA, Dilger JM, Glover MS, Geromanos S, Hughes C, Clemmer DE (2011) Using ion mobility data to improve peptide identification: intrinsic amino acid size parameters. J Proteome Res 10:2318–2329

    Article  CAS  Google Scholar 

  • Van Oudenhove L, De Vriendt K, Van Beeumen J, Mercuri PS, Devreese B (2012) Differential proteomic analysis of the response of Stenotrophomonas maltophilia to imipenem. Appl Microbiol Biotechnol 95:717–733

    Article  CAS  Google Scholar 

  • Vanrobaeys F, Devreese B, Lecocq E, Rychlewski L, De Smet L, Van Beeumen J (2003) Proteomics of the dissimilatory iron-reducing bacterium Shewanella oneidensis MR-1, using a matrix-assisted laser desorption/ionization-tandem-time of flight mass spectrometer. Proteomics 3:2249–2257

    Article  CAS  Google Scholar 

  • Venable JD, Dong MQ, Wohlschlegel J, Dillin A, Yates JR (2004) Automated approach for quantitative analysis of complex peptide mixtures from tandem mass spectra. Nat Methods 1:39–45

    Article  CAS  Google Scholar 

  • Verberkmoes NC, Russell AL, Shah M, Godzik A, Rosenquist M, Halfvarson J, Lefsrud MG, Apajalahti J, Tysk K, Hettich RL, Jansson JK (2009) Shotgun proteomics of the human distal gut microbiota. ISME J 3:179–189

    Article  CAS  Google Scholar 

  • Vollmer M, Horth P, Ngele E (2004) Optimization of two-dimensional off-line LC/MS separations to improve resolution of complex proteomic samples. Anal Chem 76:5180–5185

    Article  CAS  Google Scholar 

  • Washburn MP, Wolters D, Yates JR III (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nature Biotechnol 19:242–247

    Article  CAS  Google Scholar 

  • Wecke T, Mascher T (2011) Antibiotic research in the age of omics: from expression profiles to interspecies communication. J Antimicrob Chemother 66:2689–2704

    Article  CAS  Google Scholar 

  • Wenger CD, McAlister GC, Xia Q, Coon JJ (2010) Sub-part-per-million precursor and product mass accuracy for high-throughput proteomics on an electron transfer dissociation-enabled Orbitrap mass spectrometer. Mol Cell Proteomics 9:754–763

    Article  CAS  Google Scholar 

  • Wenzel M, Bandow JE (2011) Proteomic signatures in antibiotic research. Proteomics 11:3256–3268

    Article  CAS  Google Scholar 

  • Wilkins M (2009a) Proteomics data mining. Expert Rev Proteomics 6:599–603

    Article  Google Scholar 

  • Wilkins MR (2009b) Hares and tortoises: the high- versus low-throughput proteomic race. Electrophoresis 30:S150–S155

    Article  Google Scholar 

  • Yocum AK, Chinnaiyan AM (2009) Current affairs in quantitative targeted proteomics: multiple reaction monitoring-mass spectrometry. Brief Funct Genomic Proteomic 8:145–157

    Article  CAS  Google Scholar 

  • Yu J, Guo J (2011) Quantitative proteomic analysis of Salmonella enterica serovar Typhimurium under PhoP/PhoQ activation conditions. J Prot Res 10:2992–2302

    Article  CAS  Google Scholar 

  • Yun SH, Choi CW, Kwon SO, Park GW, Cho K, Kwon KH, Kim JY, Yoo JS, Lee JC, Choi JS, Kim S, Kim SI (2011) Quantitative proteomic analysis of cell wall and plasma membrane fractions from multidrug-resistant Acinetobacter baumannii. J Proteome Res 10:459–469

    Article  CAS  Google Scholar 

  • Zhou Y, Chen WN (2011) iTRAQ-coupled 2-D LC-MS/MS analysis of membrane protein profile in Escherichia coli incubated with apidaecin IB. PLoS One 6:e20442. doi:10.1371/journal.pone.0020442

    Article  CAS  Google Scholar 

  • Zubarev RA, Kelleher NL, McLafferty FW (1998) Electron capture dissociation of multiply charged protein cations. A nonergodic process. J Am Chem Soc 120:3265–3266

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are indebted to the Belgian Federal Government’s Interuniversity Attraction Pole Action P7/44, to the “Bijzonder Onderzoeksfonds” from Ghent University for a concerted action grant, and to the Hercules Foundation (grant AUGENT019).

Conflict of interest

The authors have declared no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bart Devreese.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Oudenhove, L., Devreese, B. A review on recent developments in mass spectrometry instrumentation and quantitative tools advancing bacterial proteomics. Appl Microbiol Biotechnol 97, 4749–4762 (2013). https://doi.org/10.1007/s00253-013-4897-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-4897-7

Keywords

Navigation