Skip to main content

Advertisement

Log in

QconCATs: design and expression of concatenated protein standards for multiplexed protein quantification

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Systems biology requires knowledge of the absolute amounts of proteins in order to model biological processes and simulate the effects of changes in specific model parameters. Quantification concatamers (QconCATs) are established as a method to provide multiplexed absolute peptide standards for a set of target proteins in isotope dilution standard experiments. Two or more quantotypic peptides representing each of the target proteins are concatenated into a designer gene that is metabolically labelled with stable isotopes in Escherichia coli or other cellular or cell-free systems. Co-digestion of a known amount of QconCAT with the target proteins generates a set of labelled reference peptide standards for the unlabelled analyte counterparts, and by using an appropriate mass spectrometry platform, comparison of the intensities of the peptide ratios delivers absolute quantification of the encoded peptides and in turn the target proteins for which they are surrogates. In this review, we discuss the criteria and difficulties associated with surrogate peptide selection and provide examples in the design of QconCATs for quantification of the proteins of the nuclear factor κB pathway.

Workflow for QconCAT mediated protein quatification

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Glufib:

Glufibrinopeptide B

GPMDB:

Global Proteome Machine Database

GST:

Glutathione S-transferase

His-tag:

Hexahistidine purification tag

MALDI-ToF:

Matrix-assisted laser desorption/ionisation time of flight

MRM:

Multiple reaction monitoring

MS:

Mass spectrometry

NF-κB:

Nuclear factor κB

PrEST:

Protein epitope signature tag

PSAQ:

Protein standards for absolute quantification

QconCAT:

Quantification concatamer

Rel:

Reticuloendotheliosis

SDS-PAGE:

Sodium dodecyl sulphate polyacrylamide gel electrophoresis

SILAC:

Stable isotope labelling by amino acids in cell culture

SRM:

Selected reaction monitoring

References

  1. Elliott MH, Smith DS, Parker CE, Borchers C (2009) J Mass Spectrom 44:1637–1660

    CAS  Google Scholar 

  2. Barnidge DR, Dratz EA, Martin T, Bonilla LE, Moran LB, Lindall A (2003) Anal Chem 75:445–451

    Article  CAS  Google Scholar 

  3. Barr JR, Maggio VL, Patterson DGJ et al (1996) Clin Chem 42:1676–1682

    CAS  Google Scholar 

  4. Bettmer J (2010) Anal Bioanal Chem 397:3495–3502

    Article  CAS  Google Scholar 

  5. Brun V, Masselon C, Garin J, Dupuis A (2009) J Proteomics 72:740–749

    Article  CAS  Google Scholar 

  6. Kito K, Ito T (2008) Curr Genomics 9:263–274

    Article  CAS  Google Scholar 

  7. Brun V, Dupuis A, Adrait A et al (2007) Mol Cell Proteomics 6:2139–2149

    Article  CAS  Google Scholar 

  8. Dupuis A, Hennekinne JA, Garin J, Brun V (2008) Proteomics 8:4633–4636

    Article  CAS  Google Scholar 

  9. Hennekinne JA, Brun V, De Buyser ML, Dupuis A, Ostyn A, Dragacci S (2009) Appl Environ Microbiol 75:882–884

    Article  CAS  Google Scholar 

  10. Hanke S, Besir H, Oesterhelt D, Mann M (2008) J Proteome Res 7:1118–1130

    Article  CAS  Google Scholar 

  11. Singh S, Springer M, Steen J, Kirschner MW, Steen H (2009) J Proteome Res 8:2201–2210

    Article  CAS  Google Scholar 

  12. Zeiler M, Straube WL, Lundberg E, Uhlen M, Mann M (2012) Mol Cell Proteomics 11:O111.009613

    Article  Google Scholar 

  13. Gerber SA, Rush J, Stemman O, Kirschner MW, Gygi SP (2003) Proc Natl Acad Sci USA 100:6940–6945

    Article  CAS  Google Scholar 

  14. Kirkpatrick DS, Gerber SA, Gygi SP (2005) Methods 35:265–273

    Article  CAS  Google Scholar 

  15. Beynon RJ, Doherty MK, Pratt JM, Gaskell SJ (2005) Nat Methods 2:587–589

    Article  CAS  Google Scholar 

  16. Pratt JM, Simpson DM, Doherty MK, Rivers J, Gaskell SJ, Beynon RJ (2006) Nat Protoc 1:1029–1043

    Article  CAS  Google Scholar 

  17. Kito K, Ota K, Fujita T, Ito T (2007) J Proteome Res 6:792–800

    Article  CAS  Google Scholar 

  18. Craig R, Cortens JP, Beavis RC (2004) J Proteome Res 3:1234–1242

    Article  CAS  Google Scholar 

  19. Desiere F, Deutsch EW, Nesvizhskii AI et al (2005) Genome Biol 6:R9

    Article  Google Scholar 

  20. Desiere F, Deutsch EW, King NL et al (2006) Nucleic Acids Res 34:D655–D658

    Article  CAS  Google Scholar 

  21. Vizcaino JA, Cote R, Reisinger F et al (2009) Proteomics 9:4276–4283

    Article  CAS  Google Scholar 

  22. Vizcaino JA, Reisinger F, Cote R, Martens L (2010) Curr Protoc Protein Sci Unit 25.4

  23. Vizcaino JA, Reisinger F, Cote R, Martens L (2011) Methods Mol Biol 696:93–105

    Article  CAS  Google Scholar 

  24. Brownridge P, Beynon RJ (2011) Methods 54:351–360

    Article  CAS  Google Scholar 

  25. Eyers CE, Lawless C, Wedge DC, Lau KW, Gaskell SJ, Hubbard SJ (2011) Mol Cell Proteomics 10:M110.003384

    Article  Google Scholar 

  26. Siepen JA, Keevil EJ, Knight D, Hubbard SJ (2007) J Proteome Res 6:399–408

    Article  CAS  Google Scholar 

  27. Nanavati D, Gucek M, Milne JL, Subramaniam S, Markey SP (2008) Mol Cell Proteomics 7:442–447

    CAS  Google Scholar 

  28. Kudla G, Murray AW, Tollervey D, Plotkin JB (2009) Science 324:255–258

    Article  CAS  Google Scholar 

  29. Brownridge P, Holman SW, Gaskell SJ et al (2011) Proteomics 11:2957–2970

    Article  CAS  Google Scholar 

  30. Benita Y, Wise MJ, Lok MC, Humphery-Smith I, Oosting RS (2006) Mol Cell Proteomics 5:1567–1580

    Article  CAS  Google Scholar 

  31. Ding C, Li Y, Kim BJ et al (2011) J Proteome Res 10:3652–3659

    Article  CAS  Google Scholar 

  32. Mirzaei H, McBee JK, Watts J, Aebersold R (2008) Mol Cell Proteomics 7:813–823

    CAS  Google Scholar 

  33. Studier FW (1991) J Mol Biol 219:37–44

    Article  CAS  Google Scholar 

  34. Brownridge P, Harman VM, Simpson DM, Beynon RJ (2012) Methods Mol Biol (in press)

  35. Carroll KM, Simpson DM, Eyers CE et al (2011) Mol Cell Proteomics 10:M111.007633

    Article  Google Scholar 

  36. Olinares PD, Kim J, Davis JI, van Wijk KJ (2011) Plant Cell 23:2348–2361

    Article  CAS  Google Scholar 

  37. Hubbard SJ (1998) Biochim Biophys Acta 1382:191–206

    Article  CAS  Google Scholar 

  38. Hubbard SJ, Beynon RJ, Thornton JM (1998) Protein Eng 11:349–359

    Article  CAS  Google Scholar 

  39. Wu C, Robertson DH, Hubbard SJ, Gaskell SJ, Beynon RJ (1999) J Biol Chem 274:1108–1115

    Article  CAS  Google Scholar 

  40. Moorthy AK, Savinova OV, Ho JQ, Wang VY, Vu D, Ghosh G (2006) EMBO J 25:1945–1956

    Article  CAS  Google Scholar 

  41. Shih VF, Tsui R, Caldwell A, Hoffmann A (2011) Cell Res 21:86–102

    Article  CAS  Google Scholar 

  42. Sun SC (2011) Cell Res 21:71–85

    Article  CAS  Google Scholar 

  43. Mallick P, Schirle M, Chen SS et al (2007) Nat Biotechnol 25:125–131

    Article  CAS  Google Scholar 

  44. Stergachis AB, MacLean B, Lee K, Stamatoyannopoulos JA, MacCoss MJ (2011) Nat Methods 8:1041–1043

    Article  CAS  Google Scholar 

  45. Xiang Y, Remily-Wood ER, Oliveira V et al (2011) Mol Cell Proteomics 10:M110.005520

    Article  Google Scholar 

  46. Eyers CE, Simpson DM, Wong SC, Beynon RJ, Gaskell SJ (2008) J Am Soc Mass Spectrom 19:1275–1280

    Article  CAS  Google Scholar 

  47. Anderson L, Hunter CL (2006) Mol Cell Proteomics 5:573–588

    CAS  Google Scholar 

  48. Lebert D, Dupuis A, Garin J, Bruley C, Brun V (2011) Methods Mol Biol 753:93–115

    Article  CAS  Google Scholar 

  49. Winter D, Seidler J, Kugelstadt D, Derrer B, Kappes B, Lehmann WD (2010) Proteomics 10:1510–1514

    Article  CAS  Google Scholar 

  50. Zinn N, Winter D, Lehmann WD (2010) Anal Chem 82:2334–2340

    Article  CAS  Google Scholar 

  51. Remily-Wood ER, Koomen JM (2012) J Mass Spectrom 47:188–194

    Article  CAS  Google Scholar 

  52. Austin RJ, Chang DK, Holstein CA et al (2012) Proteomics. doi:10.1002/pmic.201100626

  53. Bislev SL, Kusebauch U, Codrea MC et al (2012) J Proteome Res 11:1832–1843

    Article  CAS  Google Scholar 

  54. Southworth PM, Hyde JE, Sims PF (2011) Malar J 10:315

    Article  CAS  Google Scholar 

  55. Castro-Borges W, Simpson DM, Dowle A et al (2011) J Proteomics 74:1519–1533

    Article  CAS  Google Scholar 

  56. Johnson H, Eyers CE, Eyers PA, Beynon RJ, Gaskell SJ (2009) J Am Soc Mass Spectrom 20:2211–2220

    Article  CAS  Google Scholar 

  57. Rivers J, Hughes C, McKenna T et al (2011) PLoS One 6:e28902

    Article  CAS  Google Scholar 

  58. Rivers J, Simpson DM, Robertson DH, Gaskell SJ, Beynon RJ (2007) Mol Cell Proteomics 6:1416–1427

    Article  CAS  Google Scholar 

Download references

Acknowledgments

D.M.S. and R.J.B. gratefully acknowledge funding from the Biotechnology and Biological Sciences Research Council (BBSRC) Systems Approach to Biological Research (SABR) grant BB/F005938/1 and BBSRC LOLA grant BB/G009112/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Beynon.

Additional information

Published in the topical issue Quantitative Mass Spectrometry in Proteomics with guest editors Bernhard Küster and Marcus Bantscheff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simpson, D.M., Beynon, R.J. QconCATs: design and expression of concatenated protein standards for multiplexed protein quantification. Anal Bioanal Chem 404, 977–989 (2012). https://doi.org/10.1007/s00216-012-6230-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6230-1

Keywords

Navigation