Skip to main content

Advertisement

Log in

An overview of transducers as platform for the rapid detection of foodborne pathogens

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The driving advent of portable, integrated biosensing ways for pathogen detection methods offers increased sensitivity and specificity over traditional microbiological techniques. The miniaturization and automation of integrated detection systems present a significant advantage for rapid, portable detection of foodborne microbes. In this review, we have highlighted current developments and directions in foodborne pathogen detection systems. Recent progress in the biosensor protocols toward the detection of specific microbes has been elaborated in detail. It also includes strategies and challenges for the implementation of a portable platform toward rapid foodborne sensing systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ackers ML, Schoenfeld S, Markman J, Smith MG, Nicholson MA, DeWitt W, Cameron DN, Griffin PM, Slutsker L (2000) An outbreak of Yersinia enterocolitica O:8 infections associated with pasteurized milk. J Infect Dis 181:1834–1837

    Article  CAS  Google Scholar 

  • Arora P, Sindhu A, Dilbaghi N, Chaudhury A (2011) Biosensors as innovative tools for the detection of food borne pathogens. Biosens Bioelectron 28:1–12. doi:10.1016/j.bios.2011.06.002

    Article  CAS  Google Scholar 

  • Bai S, Zhao J, Zhang Y, Huang W, Xu S, Chen H, Fan LM, Chen Y, Deng XW (2010) Rapid and reliable detection of 11 food-borne pathogens using thin-film biosensor chips. Appl Microbiol Biotechnol 86:983–990

    Article  CAS  Google Scholar 

  • Beran GW, Shoeman HP, Anderson KF (1991) Food safety—an overview of problems. Dairy Food Environ Sanit 11:189–194

    Google Scholar 

  • Bhunia AK, Nanduri V, Bae E, Hirleman ED (2010) Biosensors, Foodborne Pathogen Detection. Encyclopedia of Industrial Biotechnology: Bioprocess, Bioseparation, and Cell Technology doi:10.1002/9780470054581.eib158

  • Bierne H, Sabet C, Personnic N, Cossart P (2007) Internalins: a complex family of leucine-rich repeat containing proteins in Listeria monocytogenes. Microb Inf 9:1156–1166

    Article  CAS  Google Scholar 

  • Bokanyi R, Stephens J, Foster D (1990) Isolation and characterization of Salmonella from broiler carcasses or parts. Poult Sci 69:92–598

    Article  Google Scholar 

  • Boltovets PM, Snopok BA, Boyko VR, Shevchenko TP, Dyachenko NS, Shirshov YM (2004) Detection of plant viruses using a surface plasmon resonance via complexing with specific antibodies. J Virol Meth 121(1):101–106

    Article  CAS  Google Scholar 

  • Bruno JG, Phillips T, Carillo MP, Crowell R (2009) Plastic-adherent DNA aptamer-magnetic bead and quantum dot sandwich assay for Campylobacter detection. J Fluores 19:427–435

    Article  CAS  Google Scholar 

  • Centers for Disease and Prevention (1996) Multidrug-resistant Salmonella serotype Typhimurium—United States, 1996. MMWR 46:308–310

    Google Scholar 

  • Centers for Disease and Prevention (2009) Multistate outbreak of Salmonella infections associated with peanut butter and peanut butter-containing products—United States, 2008–2009. MMWR 58:85–90

    Google Scholar 

  • Chavolla-Torres E, Alocilja EC (2009) Aptasensors for detection of microbial and viral pathogens. Biosens Bioelectron 24(11):3175–3182

    Article  Google Scholar 

  • Chen SH, Wu VC, Chuang YC, Lin CS (2008) Using oligonucleotide-functionalized Au nanoparticles to rapidly detect foodborne pathogens on a piezoelectric biosensor. J Microbiol Methods 73(1):7–17

    Article  CAS  Google Scholar 

  • Chen J, Tang J, Liu J, Cai Z, Bai X (2012) Development and evaluation of a multiplex PCR for simultaneous detection of five food-borne pathogens. J Appl Microbiol 112:823–830

    Article  CAS  Google Scholar 

  • Dalton CB, Austin CC, Sobel J, Hayes PS, Bibb WF, Graves LM, Swaminathan B, Proctor ME, Griffin PM (1997) An outbreak of gastroenteritis and fever due to Listeria monocytogenes in milk. N Engl J Med 336:100–105

    Article  CAS  Google Scholar 

  • Daly SJ, Keating GJ, Dillon PP, Manning BM, O’Kennedy R, Lee HA, Morgan MR (2000) Development of a surface plasmon resonance-based immunoassay for Aflatoxin B (1). J Agric Food Chem 48:5097–5104

    Article  CAS  Google Scholar 

  • DeMarco DR, Lim DV (2002) Detection of Escherichia coli O157:H7 in 10- and 25-gram ground beef samples with an evanescent-wave biosensor with silica and polystyrene waveguides. J Food Prot 65:596–602

    Google Scholar 

  • Dillon PP, Daly SJ, Manning BM, O’Kennedy R (2003) Immunoassay for the determination of morphine-3-glucuronide using a surface plasmon resonance-based biosensor. Biosens Bioelectron 18:217–227

    Article  CAS  Google Scholar 

  • Doganay M (2003) Listeriosis: clinical presentation. FEMS Immunol Med Microbiol 1485:1–3

    Google Scholar 

  • DuPont HL (2007) Food safety: the growing threat of foodborne bacterial enteropathogens of animal origin. Clin Infect Dis 45:1353–1361

    Article  Google Scholar 

  • Ellington AD, Szostak JK (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822

    Article  CAS  Google Scholar 

  • Elsholz B, Wörl R, Blohm L, Albers J, Feucht H, Grunwald T, Jürgen B, Schweder T, Hintsche R (2006) Automated detection and quantitation of bacterial RNA by using electrical microarrays. Anal Chem 78:4794–4802

    Article  CAS  Google Scholar 

  • Elsholz B, Nitsche A, Achenbach J, Ellerbrok H, Blohm L, Albers J, Pauli G, Hintsche R, Wörl R (2009) Electrical microarrays for highly sensitive detection of multiplex PCR products from biological agents. Biosens Bioelectron 24:1737–1743

    Article  CAS  Google Scholar 

  • Ertl P, Mikkelsen SR (2001) Electrochemical biosensor array for the identification of microorganisms based on lectin-lipopolysaccharide recognition. Anal Chem 73:4241–4248

    Article  CAS  Google Scholar 

  • Farabullini F, Lucarelli F, Palchetti I, Marrazza G, Mascini M (2007) Disposable electrochemical genosensor for the simultaneous analysis of different bacterial food contaminants. Biosens Bioelectron 22:1544–1549

    Article  CAS  Google Scholar 

  • Fitzpatrick J, Manning BM, O’Kennedy R (2003) Development of ELISA and sensor-based assays for the detection of ethynyl estradiol in bile. Food Agric Immunol 15:55–64

    Article  Google Scholar 

  • Fontaine R, Cohen M, Martin W, Vernon T (1980) Epidemic salmonellosis from cheddar cheese: surveillance and prevention. Am J Epidemiol 111:247–253

    CAS  Google Scholar 

  • Fratamico PM, Strobaugh TP, Medina MB, Gehring AG (1998) Detection of Escherichia coli O157:H7 using a surface plasmon resonance biosensor. Biotechnol Tech 12:571–576

    Article  CAS  Google Scholar 

  • Ghindilis AL, Smith MW, Schwarzkopf KR, Roth KM, Peyvan K, Munro SB, Lodes MJ, Stöver AG, Bernards K, Dill K, McShea A (2007) CombiMatrix oligonucleotide arrays: genotyping and gene expression assays employing electrochemical detection. Biosens Bioelectron 22:1853–1860

    Article  CAS  Google Scholar 

  • Gold L, Ayers D, Bertino J, Bock C, Bock A, Brody EN, Carter J, Dalby AB, Eaton BE, Fitzwater T, Flather D, Forbes A, Foreman T, Fowler C, Gawande B, Goss M, Gunn M, Gupta S, Halladay D, Heil J, Heilig J, Hicke B, Husar G, Janjic N, Jarvis T, Jennings S, Katilius E, Keeney TR, Kim N, Koch TH, Kraemer S, Kroiss L, Le N, Levine D, Lindsey W, Lollo B, Mayfield W, Mehan M, Mehler R, Nelson SK, Nelson M, Nieuwlandt D, Nikrad M, Ochsner U, Ostroff RM, Otis M, Parker T, DI Pietrasiewicz R, Rohloff J, Sanders G, Sattin S, Schneider D, Singer B, Stanton M, Sterkel A, Stewart A, Stratford S, Vaught JD, Vrkljan M, Walker JJ, Watrobka M, Waugh S, Weiss A, Wilcox SK, Wolfson A, Wolk SK, Zhang C, Zichi D (2010) Aptamer-based multiplexed proteomic technology for biomarker discovery. PLoS One 5(12):15004

    Article  Google Scholar 

  • Gomara MJ, Ercilla G, Alsina MA, Haro I (2000) Assessment of synthetic peptides for hepatitis A diagnosis using biosensor technology. J Immunol Methods 246(1–2):13–24

    Article  CAS  Google Scholar 

  • Goto K, Horiuchi H, Shinohara H, Motegi K, Hashimoto K, Hongo S, Gemma N, Hayashimoto N, Itoh T, Takakura A (2007) Specific and quantitative detection of PCR products from Clostridium piliforme, Helicobacter bilis, H. hepaticus, and mouse hepatitis virus infected mouse samples using a newly developed electrochemical DNA chip. J Microbiol Methods 69:93–99

    Article  CAS  Google Scholar 

  • Graham DL, Ferreira HA, Freitas PP (2004) Magnetoresistive-based biosensors and biochips. Trends Biotechnol 22:455–462

    Article  CAS  Google Scholar 

  • Gronewold TMA, Glass S, Quandt E, Famulok M (2005) Monitoring complex formation in the blood coagulation cascade using aptamer-coated SAW sensors. Biosens Bioelectron 20:2044–2052

    Article  CAS  Google Scholar 

  • Guntupalli R, Lakshmanan RS, Johnson ML, Hu J, Huang TS, Barbaree JM, Vodyanoy VJ, Chin BA (2007) Magnetoelastic biosensor for the detection of Salmonella typhimurium in food products. Sens Instrum Food Qual 1:3–10

    Article  Google Scholar 

  • Hamon M, Bierne H, Cossart P (2006) Listeria monocytogenes: a multifaceted model. Nat Rev Microbiol 4:423–434

    Article  CAS  Google Scholar 

  • Herold S, Karch H, Schmidt H (2004) Shiga toxin encoding bacteriophages—genomes in motion. Int J Med Microbiol 294:115–121

    Article  CAS  Google Scholar 

  • Hock B, Seifert M, Kramer K (2002) Engineering receptors and antibodies for biosensors. Biosens Bioelectron 17:239–249

    Article  CAS  Google Scholar 

  • Huang S, Yang H, Lakshmanan RS, Johnson ML, Wan J, Chen IH, Wikle HC III, Petrenko VA, Barbaree JM, Chin BA (2009) Sequential detection of Salmonella typhimurium and Bacillus anthracis spores using magnetoelastic biosensors. Biosens Bioelectron 24(6):1730–1736

    Article  CAS  Google Scholar 

  • Isaacs S, Aramini J, Ciebin B, Farrar JA, Ahmed R, Middleton D, Chandran AU, Harris LJ, Howes M, Chan E, Pichette AS, Campbell K, Gupta A, Lior LY, Pearce M, Clark C, Rodgers F, Jamieson F, Brophy I, Ellis A (2005) An international outbreak of salmonellosis associated with raw almonds contaminated with a rare phage type of Salmonella enteritidis. J Food Prot 68:191–198

    CAS  Google Scholar 

  • Jianming YE, Letcher SV, Rand AG (2006) Piezoelectric biosensor for detection of Salmonella typhimurium. J Food Sci 62:1067–1086. doi:10.1111/j.1365-2621.1997.tb15039

    Google Scholar 

  • Jokerst JC, Adkins JA, Bisha B, Mentele MM, Goodridge LD, Henry CS (2012) Development of a paper-based analytical device for colorimetric detection of select food-borne pathogens. Anal Chem 84(6):2900–2907

    Article  CAS  Google Scholar 

  • Jones F, Rives D, Carey J (1995) Salmonella contamination in commercial eggs and an egg production facility. Poult Sci 74:753–757

    Article  CAS  Google Scholar 

  • Jönsson U, Fägerstam L, Ivarsson B, Lundh K, Löfås S, Persson B, Roos H, Rönnberg I, Sjölander S, Stenberg E, Stånhlberg R, Urbaniczky C, Östlin H, Malmqvist M (1991) Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology. Biotechniques 11:620–627

    Google Scholar 

  • Jyoung JY, Hong S, Lee W, Choi JW (2006) Immunosensor for the detection of Vibrio cholerae O1 using surface plasmon resonance. Biosen Bioelectron 21(12):2315–2319

    Article  CAS  Google Scholar 

  • Kang CD, Lee SW, Park TH, Sim SJ (2006) Performance enhancement of real-time detection of protozoan parasite, Cryptosporidium oocyst by a modified surface plasmon resonance (SPR) biosensor. Enzym Microb Technol 39(3):387–390

    Article  CAS  Google Scholar 

  • Karkkainen RM, Drasbek MR, McDowell I, Smith CJ, Young NWG, Bonwick GA (2011) Aptamers for safety and quality assurance in the food industry: detection of pathogens. Int J Food Sci Technol 46(3):445–454

    Article  CAS  Google Scholar 

  • Koubova V, Brynda E, Karasova L, Skvor J, Homola J, Dostalek J, Tobiska P, Rosicky J (2001) Detection of food-borne pathogens using surface plasmon resonance biosensors. Sens Act B: Chem 74(1–3):100–105

    Article  Google Scholar 

  • LaGier M, Fell J, Goddwin KD (2007) Electrochemical detection of harmful algae and other microbial contaminants in coastal waters using hand-held biosensors. Mar Pollut Bull 54:757–770

    Article  CAS  Google Scholar 

  • Laschi S, Palchetti I, Marrazza G, Mascini M (2006) Development of disposable low density screen-printed electrode arrays for simultaneous electrochemical measurements of the hybridization reaction. J Electroanal Chem 593:211–218

    Article  CAS  Google Scholar 

  • Layton M, Calliste S, Gomez T, Patton C, Brooks S (1997) A mixed foodborne outbreak with Salmonella Heidelberg and Campylobacter jejuni in a nursing home. Infect Control Hosp Epidemiol 18(2):115–121

    Article  CAS  Google Scholar 

  • Leonard P, Hearty S, Quinn J, O’Kennedy R (2004) A generic approach for the detection of whole Listeria monocytogenes cells in contaminated samples using surface plasmon resonance. Biosens Bioelectron 19:1331–1335

    Article  CAS  Google Scholar 

  • Lin HC, Tsai WC (2003) Piezoelectric crystal immunosensor for the detection of Staphylococcal enterotoxin B. Biosens Bioelectron 18(12):1479–1483

    Article  CAS  Google Scholar 

  • Liu Y, Elsholz B, Enfors SO, Gabig-Ciminska M (2008) Critical factors for the performance of chip array-based electrical detection of DNA for analysis of pathogenic bacteria. Anal Biochem 382:77–86

    Article  CAS  Google Scholar 

  • Lodes MJ, Suciu D, Wilmoth JL, Ross M, Munro S, Dix K, Bernards K, Stöver AG, Quintana M, Lihoshi N, Lyon WJ, Danley DL, McShea A (2007) Identification of upper respiratory tract pathogens using electrochemical detection on an oligonucleotide microarray. PLoS One 9:e924

    Article  Google Scholar 

  • Louie AS, Marenchic IG, Whelan RH (1998) A fieldable modular biosensor for use in detection of foodborne pathogens. Field Anal Chem Technol 2:371–377

    Article  CAS  Google Scholar 

  • Luzi E, Minunni M, Tombelli S, Mascini M (2003) New trends in affinity sensing—aptamers for ligand binding. Trends Analyt Chem 22:810–818

    Article  CAS  Google Scholar 

  • Maeng JS, Kim N, Kim CT, Han SR, Lee YJ, Lee SW, Lee MH, Cho YJ (2012) Rapid detection of food pathogens using RNA aptamers-immobilized slide. J Nanosci Nanotechnol 12(7):5138–5142

    Article  CAS  Google Scholar 

  • Mahony M, Barnes H, Stanwell-Smith R, Dickens T, Jephcott A (1990) An outbreak of Salmonella Heidelberg infection associated with a long incubation period. J Public Health Med 12(1):19–21

    Google Scholar 

  • Mc Keague M, DeRosa MC (2012) Challenges and opportunities for small molecule aptamer development. J Nucleic Acids 2012:748913. doi:10.1155/2012/748913

    Google Scholar 

  • McCartney SA, Thackray LB, Gitlin L, Gilfillan S, Virgin HW, Colonna M (2008) MDA-5 recognition of a murine norovirus. PLoS Pathog 4(7):e1000108

    Article  Google Scholar 

  • Medina MB (2003) Detection of Staphylococcal enterotoxin B (SEB) with surface plasmon resonance biosensor. J Rapid Meth Automat Microbiol 11(3):225–243

    Article  CAS  Google Scholar 

  • Minunni M, Tombelli S, Gullotto A, Luzi E, Mascini M (2004) Development of biosensors with aptamers as bio-recognition element: the case of HIV-1 Tat protein. Biosens Bioelectron 20:1149–1156

    Article  CAS  Google Scholar 

  • Muhammad-Tahir Z, Alocilja EC (2003) Fabrication of a disposable biosensor for Escherichia coli O157:H7 detection. Sens J IEEE 3(4):345–351

    Article  CAS  Google Scholar 

  • Naimushin AN, Soelberg SD, Nguyen DK, Dunlap L, Bartholomew D, Elkind J, Melendez J, Furlong CE (2002) Detection of Staphylococcus aureus entertoxin B at femtomolar levels with a miniature integrated two-channel surface plasmon resonance (SPR) sensor. Biosens Bioelectron 17:573–584

    Article  CAS  Google Scholar 

  • Naja G, Bouvrette P, Champagne J, Brousseau R, Luong JHT (2010) Activation of nanoparticles by biosorption for E. coli detection in milk and apple juice. Appl Biochem Biotechnol 162:460–475

    Article  CAS  Google Scholar 

  • O’sullivan CK, Guilbault GG (1999) Commercial quartz crystal microbalances—theory and applications. Biosens Bioelectron 14(8–9):663–670

    Article  Google Scholar 

  • Ogert RA, Brown JE, Singh BR, Shriver-Lake LC, Ligler FS (1992) Detection of Clostridium botulinum toxin A using a fiber optic-based biosensor. Analyt Biochem 205(2):306–312

    Article  CAS  Google Scholar 

  • Ohk SH, Koo OK, Sen T, Yamamoto CM, Bhunia AK (2010) Antibody–aptamer functionalized fibre-optic biosensor for specific detection of Listeria monocytogenes from food. J Appl Microbiol 109(3):808–817

    Article  CAS  Google Scholar 

  • Palchetti I, Mascini M (2008) Electroanalytical biosensors and their potential for food pathogen and toxin detection. Anal Bioanal Chem 391:455–471

    Article  CAS  Google Scholar 

  • Pimenta MGR, da Silva VPA, de Oliveira RS, Furtado RF, Borges MF, Alves CR (2010) Preliminary study of the development of biosensor for detection of Staphylococcal enterotoxin. International Conference on Food and Agriculture Applications of Nanotechnologies

  • Pöhlman C, Wang Y, Humenik M, Heidenreich B, Gareis M, Sprinzl M (2009) Rapid, specific and sensitive electrochemical detection of foodborne bacteria. Biosens Bioelectron 24:2766–2771

    Article  Google Scholar 

  • Potter ME, Gonzalez-Ayala S, Silarug N (1997) Epidemiology of foodborne diseases. In: Doyle MP, Beuchat LR, Montville TJ (eds) Food microbiology: fundamentals and frontiers. ASM Press, Washington

    Google Scholar 

  • Quinn JG, O’Kennedy R (1999) Transduction platforms and biointerfacial design of biosensors for “real-time” biomolecular interaction analysis. Anal Lett 32(7):53–258

    Google Scholar 

  • Quinn JG, O’Kennedy R (2001) Detection of whole cell:antibody interactions using Biacore’s SPR technology. BIA J 1:22–24

    Google Scholar 

  • Rangel JM, Sparling PH, Crowe C, Griffin PM, Swerdlow DL (2005) Epidemiology of Escherichia coli O157:H7 outbreaks, United States, 1982–2002. Emerg Infect Dis 11:603–609

    Article  Google Scholar 

  • Rasooly A (2001) Surface plasmon resonance analysis of Staphylococcal enterotoxin B in food. J Food Prot 64:37–431

    CAS  Google Scholar 

  • Ricciardi C, Canavese G, Castagna R, Digregorio G, Ferrante I, Marasso SL, Ricci A, Alessandria V, Rantsiou K, Cocolin LS (2010) Online portable microcantilever biosensors for Salmonella enterica serotype enteritidis detection. Food Bioprocess Technol 3:956–960

    Article  Google Scholar 

  • Ryan CA, Nickels MK, Hargrett-Bean NT, Potter ME, Endo T, Mayer L, Langkop CW, Gibson C, McDonald RC, Kenney RT, Puhr ND, McDonnell PJ, Martin RJ, Cohen ML, Blake PA (1987) Massive outbreak of antimicrobial-resistant salmonellosis traced to pasteurized milk. JAMA 258:3269–3274

    Article  CAS  Google Scholar 

  • Savran CA, Knudsen SM, Ellington AD, Manalis SR (2004) Micromechanical detection of proteins using aptamer-based receptor molecules. Anal Chem 76:3194–3198

    Article  CAS  Google Scholar 

  • Scarano S, Mascini M, Turner AP, Minunni M (2010) Surface plasmon resonance imaging for affinity-based biosensors. Biosens Bioelectron 25(5):957–966

    Article  CAS  Google Scholar 

  • Schroeder CM, Naugle AL, Schlosser WD, Hogue AT, Angulo FJ, Rose JS, Ebel ED, Disney WT, Holt KG, Goldman DP (2005) Estimate of illnesses from Salmonella Enteritidis in eggs, United States. Emerg Infect Dis 11:113–115

    Article  Google Scholar 

  • Shriver-Lake LC, Shubin YS, Ligler FS (2003) Detection of Staphylococcal enterotoxin B in spiked food samples. J Food Prot 66(10):1851–1856

    CAS  Google Scholar 

  • Silbert L, Shlush IB, Israel E, Porgador A, Kolusheva S, Jelinek R (2006) Rapid chromatic detection of bacteria by use of a new biomimetic polymer sensor. Appl Environ Microbiol 72(11):7339–7344

    Article  CAS  Google Scholar 

  • Skottrup P, Nicolaisen M, Justesen AF (2007) Rapid determination of Phytophthora infestans sporangia using a surface plasmon resonance immunosensor. J Microbiol Methods 68(3):507–515

    Article  CAS  Google Scholar 

  • Snoeyenbos GH, Smyser CF, Van Roekel H (1969) Salmonella infections of the ovary and peritoneum of chickens. Avian Dis 13(3):668–670

    Article  CAS  Google Scholar 

  • Stadtherr K, Wolf H, Lindner P (2005) An aptamer based protein biochip. Anal Chem 77:3437–3443

    Article  CAS  Google Scholar 

  • Stratis-Cullum DN, McMasters S, Pellegrino PM (2009) Affinity probe capillary electrophoresis evaluation of aptamer binding to Campylobacter jejuni. Bacteria Sensors and Electron Devices Directorate, Army Research Laboratory ARL-TR-5015, pp 1–22

  • Su YL, Li RJ, Jiang L, Cao J (2005) Biosensor signal amplification of vesicles functionalized with glycolipid for colorimetric detection of Escherichia coli. J Colloid Interface Sci 284(1):114–119

    Article  CAS  Google Scholar 

  • Subramanian A, Irudayaraj J, Ryan T (2006) Mono and dithiol surfaces on surface plasmon resonance biosensors for detection of Staphylococcus aureus. Sens Act B: Chem 114(1):192–198

    Article  Google Scholar 

  • Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands tobacteriophage T4 DNA polymerase. Science 249:505–510

    Article  CAS  Google Scholar 

  • Valadez AM, Lana CA, Tu SI, Morgan MT, Bhunia AK (2009) Evanescent wave fiber optic biosensor for Salmonella detection in food. Sensors 9:5810–5824

    Article  CAS  Google Scholar 

  • Velusamy V, Arshak K, Korostynska O, Oliwa K, Adley C (2010) An overview of foodborne pathogen detection: in the perspective of biosensors. Biotechnol Adv 28(2):232–254

    Article  CAS  Google Scholar 

  • Waswa J, Irudayaraj J, DebRoy C (2007) Direct detection of E. coli O157:H7 in selected food systems by a surface plasmon resonance biosensor. LWT—Food Part Sci Technol 40(2):187–192

    CAS  Google Scholar 

  • Wu VCH, Chen SH, Lin CS (2007) Real-time detection of Escherichia coli O157:H7 sequences using a circulating-flow system of quartz crystal microbalance. Biosens Bioelectron 22:2967–2975

    Article  CAS  Google Scholar 

  • Yang L, Li Y, Erf GF (2004) Interdigitated array microelectrode-based electrochemical impedance immunosensor for detection of Escherichia coli O157:H7. Anal Chem 76:1107–1113

    Article  CAS  Google Scholar 

  • Yu X, Lv R, Ma Z, Liu Z, Hao Y, Li Q, Xu D (2006) An impedance array biosensor for detection of multiple antibody–antigen interactions. Analyst 131:745–750

    Article  CAS  Google Scholar 

  • Zuehlke J (2007) Rapid detection of foodborne E. coli O157:H7 using piezoelectric-excited millimeter-size cantilever sensors. Basic Biotechnol J 3:14–19

    Google Scholar 

Download references

Acknowledgments

First author gratefully acknowledges the Council of Scientific and Industrial Research (CSIR), Government of India, for providing the Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Chaudhury.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arora, P., Sindhu, A., Kaur, H. et al. An overview of transducers as platform for the rapid detection of foodborne pathogens. Appl Microbiol Biotechnol 97, 1829–1840 (2013). https://doi.org/10.1007/s00253-013-4692-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-4692-5

Keywords

Navigation