Skip to main content

Advertisement

Log in

Electroanalytical biosensors and their potential for food pathogen and toxin detection

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The detection and identification of foodborne pathogens continue to rely on conventional culturing techniques. These are very elaborate, time-consuming, and have to be completed in a microbiology laboratory and are therefore not suitable for on-site monitoring. The need for a more rapid, reliable, specific, and sensitive method of detecting a target analyte, at low cost, is the focus of a great deal of research. Biosensor technology has the potential to speed up the detection, increase specificity and sensitivity, enable high-throughput analysis, and to be used for monitoring of critical control points in food production. This article reviews food pathogen detection methods based on electrochemical biosensors, specifically amperometric, potentiometric, and impedimetric biosensors. The underlying principles and application of these biosensors are discussed with special emphasis on new biorecognition elements, nanomaterials, and lab on a chip technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. European Food Safety Authority (2007) http://www.efsa.europa.eu. Accessed 13 Nov 2007

  2. European Commission: 7th Framework Programme (2007) http://ec.europa.eu/research/fp7. Accessed 13 Nov 2007

  3. Banati D (2003) Food Control 14:89–93

    Article  Google Scholar 

  4. Centers for Disease Control and Prevention (2007) http://www.cdc.gov. Accessed 13 Nov 2007

  5. Alocilja EC, Radke SM (2003) Biosens Bioelectron 18:841–846

    Article  CAS  Google Scholar 

  6. Walker E, Pritchard C, Forsythe S (2003) Food Control 14:169–174

    Article  Google Scholar 

  7. De Boer E, Beumer RR (1999) Int J Food Microbiol 50:119–130

    Article  Google Scholar 

  8. Invitski D, Abdel-Hamid I, Atanasov P, Wilkins E (1999) Biosens Bioelectron 14:599–624

    Article  Google Scholar 

  9. Invitski D, Abdel-Hamid I, Atanasov P, Wilkins E, Striker S (2000) Electroanalysis 12:317–325

    Article  Google Scholar 

  10. Lim DV (2003) Proc IEEE 91:902–907

    Article  CAS  Google Scholar 

  11. Leonard P, Hearty S, Brennan J, Dunne L, Quinn J, Chakraborty T, O’Kennedy R (2003) Enzyme Microb Tech 32:3–13

    Article  CAS  Google Scholar 

  12. Siragusa GR, Cutter CN, Dorsa WJ, Koohmaraie M (1995) J Food Protect 58:770–775

    Google Scholar 

  13. Olsen JE (2000) Food Res Int 33:257–266

    Article  CAS  Google Scholar 

  14. Rasooly A, Herold KE (2006) J AOAC Int 89:873–883

    Google Scholar 

  15. Arora K, Chand S, Malhotra BD (2006) Anal Chim Acta 568:259–274

    Article  Google Scholar 

  16. Lazcka O, Del Campo FJ, Munoz FX (2007) Biosens Bioelectron 22:1205–1217

    Article  Google Scholar 

  17. Molecular food safety testing (2007) Roche Diagnostics Corp.http://www.molecular-food-safety-testing.com. Accessed 13 Nov 2007

  18. FDA Center for Food Safety and Applied Nutrition (2007) http://www.cfsan.fda.gov/ebam/bam-a1.html. Accessed 13 Nov 2007

  19. Microbiology International (2007) http://www.microbiology-intl.com/ALOA/AFNOR.htm. Accessed 13 Nov 2007

  20. AOAC Official Methods (1996) XVI edn

  21. Yaron S (2002) J Appl Microbiol 92:633–640

    Article  CAS  Google Scholar 

  22. Nugen SR, Leonard B, Baeumner AJ (2007) Biosens Bioelectron 22:2442–2448

    Article  Google Scholar 

  23. Cook N (2003) J Microbiol Methods 1761:1–10

    Google Scholar 

  24. Cahill D, Roben P, Quinlan N, O’Kennedy R (1995) Production of antibodies. In: Townsend A (ed) Encyclopedia analytical science, vol IV. Academic, New York, pp 2057–2066

    Google Scholar 

  25. Fitzpatrick J, Fanning L, Hearty S, Leonard P, Manning BM, Quinn JG (2000) Anal Lett 33:2563–2609

    Article  CAS  Google Scholar 

  26. Gehring AG, Albin BM (2007) J Rapid Methods Autom Microbiol 15:49–66

    Article  Google Scholar 

  27. Patel PD (2002) TRACS 21:96–115

    CAS  Google Scholar 

  28. Suzuki H, Tamiya E, Karube I (1991) Electroanalysis 3:53

    Google Scholar 

  29. Ruan C, Yang L, Li Y (2002) J Electroanal Chem 519:33–38

    Article  CAS  Google Scholar 

  30. Mulchandani P, Hangarter CM, Lei Y, Chen W, Mulchandani A (2005) Biosens Bioelectron 21:523–527

    Article  Google Scholar 

  31. Togo CA, Wutor VC, Limson JL, Pletschke BI (2007) Biotechnol Lett (in press)

  32. Perez FG, Tryland I, Mascini M, Fiksdal L (2001) Anal Chim Acta 427:149–154

    Article  CAS  Google Scholar 

  33. Serra B, Morales MD, Zhang J, Julio Reviejo A, Hall EH, Pingarron JM (2005) Anal Chem 77:8115–8121

    Article  Google Scholar 

  34. Brewster JD, Gehring AG, Mazenko RS, Van Houten LJ, Crawford CJ (1996) Anal Chem 68:4153–4159

    Article  CAS  Google Scholar 

  35. Mirhabibollahi B, Brooks JL, Kroll RG (1990) Appl Microbiol Biotechonol 34:242

    Article  CAS  Google Scholar 

  36. Croci L, Delibato E, Volpe G, Palleschi G (2001) Anal Lett 34:2597–2607

    Article  CAS  Google Scholar 

  37. Brewster JD, Mazenko RS (1998) J Immunol Methods 211:1–18

    Article  CAS  Google Scholar 

  38. Susmel S, Guilbault GG, O’Sullivan CK (2003) Biosens Bioelectron 18:881–889

    Article  CAS  Google Scholar 

  39. Zhao G, Xing F, Deng S (2007) Electrochem Commun 9:1263–1268

    Article  Google Scholar 

  40. Mittelmann AS, Ron EZ, Rishpon J (2002) Anal Chem 74:903–907

    Article  CAS  Google Scholar 

  41. Yemini M, Yaron L, Ezra Y, Rishpon J (2007) Bioelectrochemistry 70:180–184

    Article  Google Scholar 

  42. Campas M, Marty JL (2007) Biosens Bioelectron 22:1034–1040

    Article  Google Scholar 

  43. Micheli L, Radoi A, Guarrina R, Massaud R, Bala C, Moscone D, Palleschi G (2004) Biosens Bioelectron 20:190–196

    Article  CAS  Google Scholar 

  44. Kania M, Kreuzer M, Moore E, Pravda M, Hock B, Guilbault G (2003) Anal Lett 36:1851–1863

    Article  CAS  Google Scholar 

  45. Sergio HA, Micheli L, Palleschi G, Compagnone D (2004) Anal Lett 37:1545–1558

    Article  Google Scholar 

  46. Piermarini S, Micheli L, Ammida NHS, Palleschi G, Moscone D (2007) Biosens Bioelectron 22:1434–1440

    Article  CAS  Google Scholar 

  47. Gehring AG, Crawford CG, Mazenko RS, Van Houten LJ, Brewster JD (1996) J Immunol Methods 195:15–25

    Article  CAS  Google Scholar 

  48. Perez FG, Mascini M, Tothill IE, Turner APF (1998) Anal Chem 70:2380

    Article  CAS  Google Scholar 

  49. Che Y, Li Y, Slavik M, Paul D (2000) J Food Prot 63:1043–1048

    CAS  Google Scholar 

  50. Ruan C, Wang H, Li Y (2002) Trans ASAE 45:249–255

    CAS  Google Scholar 

  51. Che Y, Li Y, Slavik M (2001) Biosens Bioelectron 791–797

  52. Delibato E, Bancone M, Volpe G, De Medici D, Moscone D, Palleschi G, (2005) Anal Lett 38:1569–1586

    Article  Google Scholar 

  53. Lucarelli F, Marrazza G, Turner APF, Mascini M (2004) Biosens Bioelectron 19:515–530

    Article  CAS  Google Scholar 

  54. Kerman K, Kobayashi M, Tamiya E (2004) Meas Sci Technol 15:R1–R11

    Article  CAS  Google Scholar 

  55. Palecek E (2002) Talanta 56:809–819

    Article  CAS  Google Scholar 

  56. Palecek E, Fojta M (2001) Anal Chem 73:74A–83A

    CAS  Google Scholar 

  57. Wang J (2002) Anal Chim Acta 469:63–71

    Article  CAS  Google Scholar 

  58. Pividori MI, Merkoci A, Alegret S (2000) Biosens Bioelectron 15:291–303

    Article  CAS  Google Scholar 

  59. Farabullini F, Lucarelli F, Palchetti I, Marrazza G, Mascini M (2007) Biosens Bioelectron 22:1544–1549

    Article  CAS  Google Scholar 

  60. Lermo A, Campoy S, Barbe J, Hernandez S, Alegret S, Pividori MI (2007) Biosens Bioelectron 22:2010–2017

    Article  CAS  Google Scholar 

  61. Elsholz B, Wo R, Blohm L, Albers J, Feucht H, Grunwald T, Jurgen B, Schweder T, Hintsche R (2006) Anal Chem 78:4794–4802

    Article  CAS  Google Scholar 

  62. Baeumner AJ, Cohen RN, Miksic V, Min J (2003) Biosens Bioelectron 18:405–413

    Article  CAS  Google Scholar 

  63. Bergeveld P (2003) Sens Actuators B Chem 88:1–20

    Article  Google Scholar 

  64. Hafeman DG, Parce JW, Mcconnell HM (1988) Science 240(4856):1182–1185

    Article  CAS  Google Scholar 

  65. Dill K, Stanker L, Young CR (1999) J Biochem Biophys Methods 41:61–67

    Article  CAS  Google Scholar 

  66. Gehring AG, Patterson DL, Tu SI (1998) Anal Biochem 258:293–298

    Article  CAS  Google Scholar 

  67. Ercole C, Del Gallo M, Mosiello L, Baccella S, Lepidi A (2003) Sens Actuators B 91:163–168

    Article  Google Scholar 

  68. Yang L, Li Y, Griffis CL, Johnson MG (2004) Biosens Bioelectron 19:1139–1147

    Article  CAS  Google Scholar 

  69. Radke SM, Alocilja EC (2005) Biosens Bioelectron 20:1662–1667

    Article  CAS  Google Scholar 

  70. Muhammad-Tahir Z, Alocilja EC (2004) Biosyst Eng 88:145–151

    Article  Google Scholar 

  71. Pal S, Alocilja EC, Downes FP (2007) Biosens Bioelectron 22:2329–2336

    Article  Google Scholar 

  72. Kaur H, Arora A, Wengel J, Maiti S (2006) Biochemistry 45:7347–7355

    Google Scholar 

  73. Nelson KE, Levy M, Miller SL (2000) Proc Nat Acad Sci USA 97:3868–3871

    Google Scholar 

  74. Tombelli S, Minunni M, Mascini M (2007) Biomol Eng 24:191–200

    Article  Google Scholar 

  75. Pan Q, Zhang XL, Wu HY (2006) Antimic Agen Chemot 49:4052–4060

    Article  Google Scholar 

  76. McMasters S, Stratis-Cullum DN (2006) Proc SPIE 6380

  77. Vivekananda J, Kiel JL (2006) Lab Invest 86:610–618

    Google Scholar 

  78. Paoli GC, Chen CY, Brewster JD (2004) J Immunol Methods 289:147–155

    Article  CAS  Google Scholar 

  79. Pumera M, Sanchez S, Ichinose I, Tang J (2007) Sens Actuators B 123:1195–1205

    Article  Google Scholar 

  80. Viswanathan S, Wu LC, Huang MR, Ho JA (2006) Anal Chem 78:1115–1121

    Article  Google Scholar 

  81. Abdel-Hamid I, Ivnitski D, Atanasov P, Wilkins E (1999) Biosens Bioelectron 14:309–316

    Article  CAS  Google Scholar 

  82. Sippy N, Luxton R, Lewis RJ, Cowell DC (2003) Biosens Bioelectron 18:741–749

    Article  CAS  Google Scholar 

  83. Gómez R, Bashir R, Bhunia AK (2002) Sens Actuators B Chem 86:198–208

    Article  Google Scholar 

  84. Lagally ET, Scherer JR, Blazej RG, Toriello NM, Diep BA, Ramchandani M, Sensabaugh GF, Riley LW, Mathies RA (2004) Anal Chem 76:3162–3170

    Article  CAS  Google Scholar 

  85. Gau J Jr, Lan EH, Dunn B, Ho CM, Woo JCS (2001) Biosens Bioelectron 16:745–755

    Article  CAS  Google Scholar 

  86. Kwakye S, Goral VN, Baeumner AJ (2006) Biosens Bioelectron 2:2217–2223

    Article  Google Scholar 

  87. Kwakye S, Baeumner A (2003) Anal Bioanal Chem 376:1062–1068

    Article  CAS  Google Scholar 

  88. Zaytseva NV, Montagna RA, Baeumner AJ (2005) Anal Chem 77:7520–7527

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Mascini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palchetti, I., Mascini, M. Electroanalytical biosensors and their potential for food pathogen and toxin detection. Anal Bioanal Chem 391, 455–471 (2008). https://doi.org/10.1007/s00216-008-1876-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-1876-4

Keywords

Navigation