Skip to main content
Log in

Characterization of hemicellulases from thermophilic fungi

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The thermophilic fungi Thermomyces lanuginosus, Malbranchea cinnamomea, Myceliophthora fergusii and the thermotolerant Aspergillus terreus were cultivated on various carbon sources, and hemicellulolytic and cellulolytic enzyme profiles were evaluated. All fungi could grow on locust bean galactomannan (LBG), Solka floc, wheat bran and pectin, except T. lanuginosus, which failed to utilize LBG for growth. Different levels of cellulase and hemicellulase activities were produced by these fungal strains. Depending on the carbon source, variable ratios of thermostable hydrolytic enzymes were obtained, which may be useful in various applications. All strains were found to secrete xylanolytic and mannanolytic enzymes. Generally, LBG was the most efficient carbon source to induce mannanase activities, although T. lanuginosus was able to produce mannanase only on wheat bran as a carbon source. Xylanolytic activities were usually highest on wheat bran medium, but in contrast to other investigated fungi, xylanase production by M. fergusii was enhanced on pectin medium. Preliminary thermostability screening indicated that among the investigated species, thermotolerant glycosidases can be found. Some of the accessory activities, including the α-arabinosidase activity, were surprisingly high. The capability of the produced enzymes to improve the hydrolysis of lignocellulosic pretreated substrate was evaluated and revealed potential for these enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aro N, Pakula T, Penttilä M (2005) Transcriptional regulation of plant cell wall degradation by filamentous fungi. FEMS Microbiol Rev 29:719–739

    Article  PubMed  CAS  Google Scholar 

  • Badhan AK, Chadha BS, Kaur J, Saini HS, Bhat MK (2007) Production of multiple xylanolytic and cellulolytic enzymes by thermophilic fungus Myceliophthora sp IMI 387099. Biores Technol 98:504–510

    Article  CAS  Google Scholar 

  • Bailey MJ, Nevalainen KMH (1981) Induction, isolation and testing of stable Trichoderma reesei mutants with improved production of solubilizing cellulase. Enzym Microb Technol 3:153–157

    Article  CAS  Google Scholar 

  • Bailey MJ, Biely P, Poutanen K (1992) Interlaboratory testing of methods for assay of xylanase activity. J Biotechnol 23:257–270

    Article  CAS  Google Scholar 

  • Béguin P, Aubert JP (1994) The biological degradation of cellulose. FEMS Microbiol Rev 13:25–58

    Article  PubMed  Google Scholar 

  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2011) The carbohydrate-active enzymes database (CAZy). http://www.cazy.org/. Accessed 25 Oct 2011

  • Cesar T, Mrša V (1995) Enzymatic properties of the xylanase preparation from Thermomyces lanuginosus. Croat Chem Acta 68:657–681

    Google Scholar 

  • Chadha BS, Jaswinder K, Rubinder K, Saini HS, Singh S (1999) Xylanase production by Thermomyces lanuginosus wild and mutant strains. World J Microbiol Biotechnol 15:217–221

    Article  Google Scholar 

  • Clarke JH, Davidson K, Rixon JE, Halstead JR, Fransen MP, Gilbert HJ (2000) A comparison of enzyme aided bleaching of softwood paper pulp using combinations of xylanases, mannanases and alpha-galactosidase. Appl Microbiol Biotechnol 53:661–667

    Article  PubMed  CAS  Google Scholar 

  • Collins T, Gerday C, Feller G (2005) Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 29:3–23

    Article  PubMed  CAS  Google Scholar 

  • Cooney DG, Emerson R (1964) Methods of isolation and culture. In: Thermophilic fungi: an account of their biology, activities and classification. WH Freeman & Company, San Francisco, pp 8–13

  • Dhawan S, Kaur J (2007) Microbial mannanases: an overview of production and applications. Crit Rev Biotechnol 27:197–216

    Article  PubMed  CAS  Google Scholar 

  • Fujmoto H, Isomura M, Ajisaka K (1997) Syntheses of alkyl β-d-mannopyranosides and β-1,4-linked oligosaccharides using β-mannosidase from Rhizopus niveus. Biosci Biotechnol Biochem 61:2010–2014

    Article  Google Scholar 

  • Gao D, Uppugundla N, Chundawat S, Yu X, Hermanson S, Gowda K, Brumm P, Mead D, Balan V, Dale BE (2011) Hemicellulases and auxiliary enzymes for improved conversion of lignocellulosic biomass to monosaccharides. Biotechnol Biofuels 4:5

    Article  PubMed  CAS  Google Scholar 

  • Ghatora SK, Chadha BS, Badhan AK, Saini HS, Bhat MK (2006) Identification and characterization of diverse xylanases from thermophilic and thermotolerant fungi. BioResearch 1:18–33

    Google Scholar 

  • Gomes J, Gomes I, Kreiner W, Esterbauer H, Sinner M, Steiner W (1993) Production of high level of cellulase-free and thermostable xylanase by a wild strain of Thermomyces lanuginosus using beechwood xylan. J Biotechnol 30:283–297

    Article  CAS  Google Scholar 

  • Heinonsalo J, Jørgensen K, Sen R (2001) Microcosm-based analyses of Scots pine seedling growth, ectomycorrhizal fungal community structure and carbon utilization profiles in boreal forest humus and underlying illuvial mineral horizons. FEMS Microbiol Ecol 36:73–84

    Article  PubMed  CAS  Google Scholar 

  • Hilge M, Gloor SM, Rypniewski W, Sauer O, Heightman TD, Zimmerman W, Winterhalter K, Piontek K (1998) High resolution native and complex structures of thermostable β-mannanase from Thermomonospora fusca–substrate specificity in glycosyl hydrolase family 5. Structure 6:1433–1444

    Article  PubMed  CAS  Google Scholar 

  • Hoq MM, Deckwer W (1995) Cellulase-free xylanase by thermophilic fungi: a comparison of xylanase production by two Thermomyces lanuginosus strains. Appl Microbiol Biotechnol 43:604–609

    Article  CAS  Google Scholar 

  • Hrmová M, Biely P, Vršanská M (1989) Cellulose- and xylan-degrading enzymes of Aspergillus terreus and Aspergillus niger. Enzym Microb Technol 11:610–616

    Article  Google Scholar 

  • Itoh H, Kamiyama Y (1995) Synthesis of alkyl- β-mannosides from mannobiose by Aspergillus niger β-mannosidase. J Ferment Bioeng 80:510–512

    Article  CAS  Google Scholar 

  • IUPAC (International Union of Pure and Applied Chemistry) (1987) Measurement of cellulase activities. Pure Appl Chem 59:257–268

    Article  Google Scholar 

  • Kango N (2003) Fungal biotechnology: characterization of xylanases from thermophilic fungi. PhD thesis, Dr HS Gour Vishwvidyalaya, Sagar (MP)

  • Kango N, Agrawal SC, Jain PC (2003) Isolation of thermophilic fungi from soil and decomposing organic matter. Asian J Microbiol Biotechnol Environ Sci 5:445–447

    Google Scholar 

  • Kurakake M, Komaki T (2001) Production of beta-mannanase and beta-mannosidase from Aspergillus awamori K4 and their properties. Curr Microbiol 42:377–380

    Article  PubMed  CAS  Google Scholar 

  • Larsen J, Petersen MØ, Thirup L, Li HW, Iversen FK (2008) The IBUS Process–lignocellulosic bioethanol close to a commercial reality. Chem Eng Technol 31:765–772

    Article  CAS  Google Scholar 

  • Luonteri E, Siika-aho M, Tenkanen M, Viikari L (1995) Purification and characterization of three α-arabinosidases from Aspergillus terreus. J Biotechnol 38:279–291

    Article  CAS  Google Scholar 

  • Luonteri E, Alatalo E, Siika-aho M, Penttilä M, Tenkanen M (1998) α-Galactosidases of Penicillium simplicissimum: production, purification and characterization of the gene encoding AGLI. Biotechnol Appl Biochem 28:179–188

    PubMed  CAS  Google Scholar 

  • Maheshwari R, Bharadwaj G, Bhat MK (2000) Thermophilic fungi: their physiology and enzymes. Microbiol Mol Biol Rev 64:461–488

    Article  PubMed  CAS  Google Scholar 

  • Marques S, Pala H, Alves L, Amaral-Collaco MT, Gama FM, Girio FM (2003) Characterisation and application of glycanases secreted by Aspergillus terreus CCMI498 and Trichoderma viride CCMI 84 for enzymatic deinking of mixed office wastepaper. J Biotechnol 100:209–219

    Article  PubMed  CAS  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Öhgren K, Bura R, Saddler J, Zacchi G (2007) Effect of hemicellulose and lignin removal on enzymatic hydrolysis of steam pretreated corn stover. Bioresour Technol 98:2503–2510

    Article  PubMed  Google Scholar 

  • Pakarinen A, Maijala P, Jaakkola S, Stoddard FL, Kymäläinen M, Viikari L (2011) Evaluation of preservation methods for improving biogas production and enzymatic conversion yields of annual crops. Biotechnol Biofuels 4:20

    Article  PubMed  CAS  Google Scholar 

  • Polizeli MLTM, Rizzatti ACS, Monti R, Terenzi HF, Jorge JA, Amorim DS (2005) Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 67:577–591

    Article  PubMed  CAS  Google Scholar 

  • Poutanen K, Rättö M, Puls J, Viikari L (1987) Evaluation of different microbial xylanolytic systems. J Biotechnol 6:49–60

    Article  CAS  Google Scholar 

  • Puchart V, Katapodis P, Biely P, Kremnický L, Christakopoulos P, Vršanská M, Kekos D, Macris BJ, Bhat MK (1999) Production of xylanases, mannanases, and pectinases by the thermophilic fungus Thermomyces lanuginosus. Enzym Microb Technol 24:355–361

    Article  CAS  Google Scholar 

  • Puchart V, Vršanská M, Bhat MK, Biely P (2000) Purification and characterization of α-galactosidase from a thermophilic fungus Thermomyces lanuginosus. Biochim Biophys Acta 1524:27–37

    Article  CAS  Google Scholar 

  • Puchart V, Vršanská M, Svoboda P, Pohl J, Ögel ZB, Biely P (2004) Purification and characterization of two forms of endo-beta-1,4-mannanase from a thermotolerant fungus, Aspergillus fumigatus IMI 385708 (formerly Thermomyces lanuginosus IMI 158749). Biochim Biophys Acta 1674:239–250

    Article  PubMed  CAS  Google Scholar 

  • Rätto M, Poutanen K (1988) Production of mannan-degrading enzymes. Biotechnol Lett 10:661–664

    Article  Google Scholar 

  • Roche N, Desgranges C, Durand A (1994) Study on the solid-state production of a thermostable α-l-arabinofuranosidase of Thermoascus aurantiacus on sugar beet pulp. J Biotechnol 38:43–50

    Article  CAS  Google Scholar 

  • Sachslehner A, Nidetzky B, Kulbe KD, Haltrich D (1998) Induction of mannanase, xylanase, and endoglucanase activities in Sclerotium rolfsii. Appl Environ Microbiol 64:594–600

    PubMed  CAS  Google Scholar 

  • Selig MJ, Knoshaug EP, Adney WS, Himmel ME, Decker SR (2008) Synergistic enhancement of cellobiohydrolase performance on pretreated corn stover by addition of xylanase and esterase activities. Bioresour Technol 99:4997–5005

    Article  PubMed  CAS  Google Scholar 

  • Shankar SK, Dhananjay SK, Mulimani VH (2009) Purification and characterization of thermostable α-galactidase from Aspergillus terreus GR. Appl Biochem Biotechnol 152:275–285

    Article  PubMed  CAS  Google Scholar 

  • Singh S, Pillay B, Dilsook V, Prior BA (2000) Production and properties of hemicellulases by a Thermomyces lanuginosus strain. J Appl Microbiol 88:975–982

    Article  PubMed  CAS  Google Scholar 

  • Singh S, Madlala AM, Prior BA (2003) Thermomyces lanuginosus: properties of strains and their hemicellulases. FEMS Microbiol Rev 27:3–16

    Article  PubMed  CAS  Google Scholar 

  • Stålbrand H, Siika-Aho M, Tenkanen M, Viikari L (1993) Purification and characterisation of two β-mannanases from Trichoderma reesei. J Biotechnol 29:229–242

    Article  Google Scholar 

  • Szijártó N, Horan E, Zhang JH, Puranen T, Siika-aho M, Viikari L (2011) Thermostable endoglucanases in the liquefaction of hydrothermally pretreated wheat straw. Biotechnol Biofuels 4:2–10

    Article  PubMed  Google Scholar 

  • Tenkanen M (1998) Action of Trichoderma reesei and Aspergillus oryzae esterases in the deacetylation of hemicelluloses. Biotechnol Appl Biochem 27:19–24

    PubMed  CAS  Google Scholar 

  • Viikari L, Poutanen K, Tenkanen M, Tolan JS (2002) Hemicellulases. In: Flickinger MC, Drew SW (eds) Encyclopedia of bioprocess technology: fermentation, biocatalysis, and bioseparation. Wiley, Chichester (electronic release)

    Google Scholar 

  • Viikari L, Alapuranen M, Puranen T, Vehmaanperä J, Siika-Aho M (2007) Thermostable enzymes in lignocellulose hydrolysis. In: Olsson L (ed) Biofuels–advances in Biochemical Engineering/Biotechnology 108. Springer, Berlin pp 121–145

  • Wood TM, Bhat KM (1988) Methods for measuring cellulase activities. Methods Enzymol 160:87–117

    Article  CAS  Google Scholar 

  • Xiao Z, Storms R, Tsang A (2005) Microplate-based carboxymethylcellulose assay for endoglucanase activity. Anal Biochem 342:176–178

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The financial contribution by CIMO, Finland and UGC, New Delhi is acknowledged. Pekka Maijala is partially supported by the Academy of Finland, project no: 1127961. MSc. Jonathan Coppinger and MSc Tuomas Niskanen are thanked for the technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Maijala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maijala, P., Kango, N., Szijarto, N. et al. Characterization of hemicellulases from thermophilic fungi. Antonie van Leeuwenhoek 101, 905–917 (2012). https://doi.org/10.1007/s10482-012-9706-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-012-9706-2

Keywords

Navigation