Skip to main content

Advertisement

Log in

Stress-tolerant P-solubilizing microorganisms

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Drought, high/low temperature, and salinity are abiotic stress factors accepted as the main reason for crop yield losses in a world with growing population and food price increases. Additional problems create nutrient limitations and particularly low P soil status. The problem of phosphate fertilizers, P plant nutrition, and existing phosphate bearing resources can also be related to the scarcity of rock phosphate. The modern agricultural systems are highly dependent on the existing fertilizer industry based exclusively of this natural, finite, non-renewable resource. Biotechnology offers a number of sustainable solutions that can mitigate these problems by using plant beneficial, including P-solubilizing, microorganisms. This short review paper summarizes the current and future trends in isolation, development, and application of P-solubilizing microorganisms in stress environmental conditions bearing also in mind the imbalanced cycling and unsustainable management of P. Special attention is devoted to the efforts on development of biotechnological strategies for formulation of P-solubilizing microorganisms in order to increase their protection against adverse abiotic factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ali H, Tucher TC, Thompson TL, Salim M (2001) Effects of salinity and mixed ammonium and nitrate nutrition on the growth and nitrogen utilization of barley. J Agron Crop Sci 186:223–228

    Article  Google Scholar 

  • Arora NK, Khare E, Maheshwari DK (2011) Plant growth promoting rhizobacteria: Constraints in bioformulation, commercialization, and future strategies. In Maheshwari DK (ed) Plant growth and health promoting bacteria. Microbiology Monographs vol. 18. Springer, pp. 97–116.

  • Arzanesh MH, Alikhani HA, Khavazi K, Rahimian HA, Miransari M (2011) Wheat (Triticum aestivum L.) growth enhancement by Azospirilum sp. under drought stress. World J Microbiol Biotechnol 27:197–205

    Article  CAS  Google Scholar 

  • Banerjee S, Palit R, Sengupta Ch, Standing D (2010) Stress induces phosphate solubilisation by Arthrobacter sp. and Bacillus sp. isolated from tomato rhizosphere. Aust J Crop Sci 4:378–383

    CAS  Google Scholar 

  • Barrow JR, Osuna P (2002) Phosphorus solubilization and uptake by dark septate fungi in fourwing saltbush, Atriplex canescens (Pursh) Nutt. J Arid Environ 51:449–459

    Article  Google Scholar 

  • Barrow JR, Osuna-Avila P, Reyes-Vera I (2004) Fungal endophytes intrinsincally associated with micropropagated plants regenerated from native Bouteloua eriopoda Torr and Atroplex canescens (Pursh) Nutt. In Vitro Cell Dev Biol Plant 40:608–612

    Article  Google Scholar 

  • Bashan Y (1998) Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnol Adv 15:729–770

    Article  Google Scholar 

  • Berbee ML (2001) The phylogeny of plant and animal pathogens in the Ascomycota. Physiol Mol Plant Pathol 59:165–187

    Article  CAS  Google Scholar 

  • Blackwell M (2000) Terrestrial life-fungal from the start? Science 289:1884–1885

    Article  CAS  Google Scholar 

  • Chaiharn M, Lumyong S (2009) Phosphate solubilisation potential and stress tolerance of rhizobacteria from rice soil in Northern Thailand. World J Microbiol Biotechnol 25:305–314

    Article  CAS  Google Scholar 

  • Chanway CP, Hall FB (1994) Growth of out planted lodepole pine seedlings one year after inoculation with plant growth promoting rhizobacteria. Forest Sci 40:238–246

    Google Scholar 

  • Consensus Statement Declaration (2011) Sustainable phosphorus summit, Tempe, Arizona, USA, ASU School of Life Sciences

  • Das K, Katiyar V, Goel R (2003) P solubilisation potential of plant growth promoting Pseudomonas mutants at low temperature. Microbiol Res 158:359–362

    Article  Google Scholar 

  • Dey C, Weinand T, Asch F (2009) Plant–rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ 32(1682):1694

    Google Scholar 

  • Egamberdieva D, Kucharova Z (2009) Selection for root colonising bacteria stimulating wheat growth in saline soils. Biol Fertil Soils 45:563–571

    Article  Google Scholar 

  • Egamberdiyeva D, Höflich G (2003) Influence of growth-promoting on the growth of wheat in different soils and temperatures. Soil Biol Biochem 35:973–978

    Article  CAS  Google Scholar 

  • FAO (2005) Global network on integrated soil management for sustainable use of salt-affected soils. FAO. Land and Plant Nutrition Management Service, Rome

    Google Scholar 

  • Gaind S, Gaur A (1991) Thermotolerant phosphate solubilizing microorganisms and their interaction with mungbean. Plant Soil 133:141–149

    Article  CAS  Google Scholar 

  • Goldstein AH, Rogers RD (1999) Biomediated continuous release phosphate fertilizer. US Patent 5:912,398

    Google Scholar 

  • Grover M, Ali Sk Z, Sandhya V, Rasul A, Venkateswarlu B (2011) Role of microorganisms in adaptation of agricultural crops to abiotic stresses. World J Microbiol Biotechnol 27:1231–1240

    Article  Google Scholar 

  • Gulati A, Rahi P, Vyas P (2008) Characterization of phosphate-solubilizing fluorescent Pseudomonas from the rhizosphere of Seabuckthorn growing in the cold deserts of Himalayas. Curr Microbiol 56:73–79

    Article  CAS  Google Scholar 

  • Gulati A, Vyas P, Rahi P, Kasana RCh (2009) Plant growth-promoting and rhizosphere-competent Acinetobacter rhizosphaerae strain BIHB 723 from the cold deserts of the Himalayas. Curr Microbiol 58:371–377

    Article  CAS  Google Scholar 

  • Gutierrez-Correa M, Ludeña Y, Ramage G, Villena GK (2012) Recent advances on filamentous fungal biofilms for industrial uses. Appl Biochem Biotechnol. doi:10.1007/s12010-012-9555-5, in press

  • Haynes RJ, Swift RS (1990) Stability of soil aggregates in relation to organic constituents and soil water content. J Soil Sci 41:73–83

    Article  CAS  Google Scholar 

  • Holker U, Lenz J (2005) Solid-state fermentation—are there any biotechnological advantages. Curr Opin Microbiol 8:301–306

    Article  Google Scholar 

  • Hueso S, Hernandez T, Garcia C (2011) Resistance and resilience of the soil microbial biomass to severe drought in semiarid soils: the importance of organic amendments. Appl Soil Ecol 50:27–36

    Google Scholar 

  • Ijdo M, Cranenbrouck S, Declerck S (2011) Methods for large-scale production of AM fungi: past, present, and future. Mycorrhiza 21:1–16

    Article  CAS  Google Scholar 

  • Insam H, Parkinson D, Domsch KH (1989) Influence of macroclimate on soil microbial biomass. Soil Biol Biochem 21:211–221

    Article  Google Scholar 

  • Ivanova E, Teunou E, Poncelet D (2005) Allginate based macrocapsules as inoculants carriers for production of nitrogen biofertilizers. Proceedings of the Balkan Scientific Conference of Biology, Plvdiv, Bulgaria (Eds. B Gruev, M Nikolova, A Donev), pp 90–108.

  • Iyamuremye F, Dick RP (1996) Organic amendments and phosphorus sorption by soils. Adv Agron 56:139–185

    Article  CAS  Google Scholar 

  • Johri JK, Surange S, Nautiyal CS (1999) Occurrence of salt, pH, and temperature-tolerant, phosphate-solubilizing bacteria in alkaline soils. Curr Microbiol 39:89–93

    Article  CAS  Google Scholar 

  • Kern J, Hellenbrand HJ, Gömmel M, Ammon Ch, Berg W (2011) Effects of climate factors and soil management on the methane flux in soils from annual and perennial energy crops. Biol Fertil Soils. doi:10.1007/s00374-011-0603-s

  • Khan MS, Zaidi A, Wani PA (2007) Role of phosphate-solubilizing microorganisms in sustainable agriculture—a review. Agron Sustain Dev 27:29–43

    Article  Google Scholar 

  • Kütük C, Cayci G, Baran A, Baskan O, Hartmann R (2003) Effects of beer factory sludge on soil properties and growth of sugar beet (Beta vulgaris saccharifera L.). Bioresour Technol 90:75–80

    Article  Google Scholar 

  • Malusa E, Sas-Paszt K, Ciesielska J (2012) Technologies for beneficial microorganisms as biofertilizers. Sci World J. doi:10.1100/2012/491206

  • Maybank J, Bonsal B, Jones K, Lawford R, O’Brien EG, Ripley EA, Wheaton E (1995) Drought as a natural disaster. Atmos Ocean 33:195–222

    Article  Google Scholar 

  • Mitchell DA, Berovic M, Krieger N (2002) Overview of solid state bioprocessing. Biotechnol Annu Rev 8:183–225

    Article  CAS  Google Scholar 

  • Morita RY (1975) Psychrophilic bacteria. Bacteriol Rev 39:144–167

    CAS  Google Scholar 

  • Nautiyal XS, Bhadauria S, Kumar P, Lal K, Mondal R, Verma D (2000) Stress induced phosphate solubilisation in bacteria isolated from alkaline soils. FEMS Microbiol Lett 182:291–296

    Article  CAS  Google Scholar 

  • Neset T-S, Cordell D (2012) Global phosphorus scarcity: identifying synergies for a sustainable future. J Sci Food Agric 92:2–6

    Article  CAS  Google Scholar 

  • Pandey A, Trivedi P, Kumar B, Palni Lok Man S (2006) Characterization of a phosphate solubilizing and antagonistic strain of Pseudomonas putida (B0) isolated from a sub-alpine location in the Indian Central Himalaya. Curr Microbiol 53:102–107

    Article  CAS  Google Scholar 

  • Pascual I, Antolin MC, Garcia C, Polo A, Sanchez-Diaz M (2007) Effect of water deficit on microbial characteristics in soil amended with water sewage sludge or inorganic fertilizer under laboratory conditions. Bioresour Technol 98:29–37

    Article  CAS  Google Scholar 

  • Rinu K, Pandey A (2011) Slow and steady phosphate solubilisation by a psychrotolerant strain of Paecilomyces hepiali (MTCC 9621). World J Microbiol Biotechnol 27:1055–1062

    Article  Google Scholar 

  • Rodriguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  CAS  Google Scholar 

  • Sandhya V, Ali Sk Z, Grover M, Reddy G, Venkateswarlu B (2009) Alleviation of drought stress effects in sunflower seedlings by exopolysaccharides producing Pseudomonas putida strain P45. Biol Fertil Sol 46:17–26

    Article  CAS  Google Scholar 

  • Sandhya V, Ali Sk Z, Grover M, Reddy G, Venkateswarlu B (2010) Effect of plant growth promoting Pseudomonas spp. on compatible solutes, antioxidant status and plant growth of maize under drought stress. Plant Growth Regul 62:21–30

    Article  CAS  Google Scholar 

  • Sardans J, Penuelas J (2005) Drought decreases soil enzyme actiyity in a Mediterranean holm oak forest. Soil Biol Biochem 37:455–461

    Article  CAS  Google Scholar 

  • Sardans J, Penuelas J, Estiarte M (2006) Warming and drought alter soil phosphatase activity and soil P availability in a Mediterranean shrubland. Plant Soil 289:227–238

    Article  CAS  Google Scholar 

  • Schulthess FM, Faeth SH (1998) Distribution, abundances, and associations of the endophytic fungal community of Arizona fescue (Festuca arizonica). Mycologia 90:569–578

    Article  Google Scholar 

  • Sidari M, Mallamaci C, Muscolo A (2008) Drought, salinity and heat differently affect seed germination of Pinus pinea. J For Res 13:326–330

    Article  CAS  Google Scholar 

  • Singh SM, Yadav LS, Singh SK, Singh P, Singh PN, Ravindra R (2011) Phosphate solubilizing ability of two Arctic Aspergillus strains. Polar Res 30:7283–7289

    CAS  Google Scholar 

  • Sinsabaugh RC, Antibus RK, Linkins AE, McClaugherty CA, Rayburn L, Repert D, Weiland T (1993) Wood decomposition: nitrogen and phosphorus dynamics in relation to extracellular enzyme activity. Ecology 74:1586–1593

    Article  CAS  Google Scholar 

  • Soltani A, Gholipoor M, Zeinali E (2006) Seed reserve utilization and seedling growth of wheat as affected by drought and salinity. Environ Exp Bot 55:195–200

    Article  Google Scholar 

  • Srividya S, Soumya S, Pooja K (2009) Influence of environmental factors and salinity on phosphate solubilisation by a newly isolated Aspergillus niger F7 from agricultural soil. Afr J Biotechnol 8:1864–1870

    CAS  Google Scholar 

  • Tengerby RP, Szakacs G (2003) Bioconversion of lignocellulose in solid substrate fermentation. Biochem Eng J 13:169–179

    Article  Google Scholar 

  • Trivedi P, Sa T (2008) Pseudomonas corrugate (NRRL B-30409) mutants increased phosphate solubilisation, organic acid production, and plant growth at lower temperatures. Curr Microbiol 56:140–144

    Article  CAS  Google Scholar 

  • Uvarov AV, Tiunov AV, Scheu S (2011) Effects of seasonal and diurnal temperature fluctuations on population dynamics of two epigeic earthworm species in forest soil. Soil Biol Biochem 43:559–570

    Article  CAS  Google Scholar 

  • Vassilev N, Vassileva M (1992) Production of organic acids by immobilized filamentous fungi. Mycol Res 96:563–570

    Article  Google Scholar 

  • Vassilev N, Vassileva M (2003) Biotechnological solubilization of rock phosphate on media containing agro-industrial wastes. Appl Microbiol Biotechnol 61:435–440

    CAS  Google Scholar 

  • Vassilev N, Vassileva M (2005) Gel-entrapment of arbuscular mycorrhizal fungi: Current status and future prospects. Rev Environ Sci Bio/Technol 4:235–243

    Article  CAS  Google Scholar 

  • Vassilev N, Vassileva M, Fenice M, Federici F (2001a) Immobilized cell technology applied in solubilization of insoluble inorganic (rock) phosphates and P plant acquisition. Bioresour Technol 79:263–271

    Article  CAS  Google Scholar 

  • Vassilev N, Vassileva M, Azcon R, Medina A (2001b) Application of free and Ca-alginate-entrapped Glomus deserticola and Yarrowia lipolytica in a soil–plant system. J Biotechnol 91:237–242

    Article  CAS  Google Scholar 

  • Vassilev N, Vassileva M, Azcon R, Medina A (2001c) Interactions of an arbuscular mycorrhizal fungus with free and co-encapsulated cells of Rhizobium trifoli and Yarrowia lipolytica inoculated into a soil-plant system. Biotechnol Lett 23:149–151

    Article  CAS  Google Scholar 

  • Vassilev N, Vassileva M, Azcon R, Medina A (2001d) Preparation of gel-entrapped mycorrhizal inoculum in the presence or absence of Yarrowia lipolytica. Biotechnol Lett 23:907–909

    Article  CAS  Google Scholar 

  • Vassilev N, Vassileva M, Nikolaeva I (2006) Simultaneous P-solubilizing and biocontrol activity of microorganisms: potentials and future trends. Appl Microbiol Biotechnol 71:137–144

    Article  CAS  Google Scholar 

  • Vassilev N, Nikolaeva I, Vassileva M (2007a) Indole-3-acetic acid production by gel-entrapped Bacillus thuringiensis in the presence of rock phosphate ore. Chem Eng Commun 194:441–445

    Article  CAS  Google Scholar 

  • Vassilev N, Vassileva M, Bravo V, Fernandez-Serrano M, Nikolaeva I (2007b) Simultaneous phytase production and rock phosphate solubilisation by Aspergillus niger grown on dry olive wastes. Ind Crop Prod 26:332–336

    Article  CAS  Google Scholar 

  • Vassilev N, Nikolaeva I, Jurado E, Reyes A, Fenice M, Vassileva M (2008) Antagonistic effect of microbially-treated mixture of agro-industrial wastes and inorganic insoluble phosphate to Fusarium wilt disease. In: Kim Myung-Bo (ed) Progress in environmental microbiology. Nova, USA, pp 223–234

    Google Scholar 

  • Vassilev N, Someus E, Serrano M, Bravo V, Garcia Roman M, Reyes A, Vassileva M (2009a) Novel approaches in phosphate-fertilizer production based on wastes derived from rock phosphate mining and food processing industry. In: Samuelson JP (ed) Industrial waste: environmental impact, disposal and treatment. Nova, USA, pp 387–391

    Google Scholar 

  • Vassilev N, Requena A, Nieto L, Nikolaeva I, Vassileva M (2009b) Production of manganese peroxidase by Phanerochaete chrysosporium grown on medium containing agro-wastes/rock phosphate and biocontrol properties of the final product. Ind Crop Prod 30:28–32

    Article  CAS  Google Scholar 

  • Vassilev N, Reyes A, Altmajer D, Serrano M, Sanchez D, Vassileva M (2010) Ecological effects of microbially-treated hydroxyapatite. 10th International Multidisciplinary Scientific GeoConference. SGEM 2:521–528

    Google Scholar 

  • Vassileva M, Azcon R, Barea JM, Vassileva N (1999) Effect of encapsulated cells of Enterobacter sp on plant growth and phosphate uptake. Bioresour Technol 67:229–232

    Article  CAS  Google Scholar 

  • Vassileva M, Azcon R, Barea JM, Vassilev N (2000) Rock phosphate solubilization by free and encapsulated cells of Yarowia lipolytica. Process Biochem 35:693–697

    Article  CAS  Google Scholar 

  • Vassileva M, Serrano M, Bravo V, Jurado E, Nikolaeva I, Martos V, Vassilev N (2010) Multifunctional properties of phosphate-solubilizing microorganisms grown on agro-industrial wastes in fermentation and soil conditions. Appl Microbiol Biotechnol. doi:10.1007/s00253-009-2366-0

  • Vassileva M, Eichler-Löbermann B, Reyes A, Vassilev N (2012) Animal bones char solubilization by gel-entrapped Yarrowia lipolytica on glycerol-based media. Sci World J. doi:10.1100/2012/907143

  • Vilchez S, Manzanera M (2011) Biotechnological uses of desiccation-tolerant microorganisms for the rhizoremediation of soils subjected to seasonal drought. Appl Microbiol Biotechnol 91:1297–1304

    Article  CAS  Google Scholar 

  • Whitelaw MA (2000) Growth promotion of plants inoculated with phosphate-solubilizing fungi. Adv Agron 69:99–151

    Article  CAS  Google Scholar 

  • Wu CH, Bernard SM, Andersen GL, Chen W (2009) Developing microbe–plant interactions for applications in plant-growth promotion and disease control, production of useful compounds, remediation and carbon sequestration. Microb Biotechnol 2:428–440

    Article  CAS  Google Scholar 

  • Xiao C, Chi R, Li X, Xia M, Xia Z (2011) Biosolubilization of rock phosphate by three stress-tolerant fungal strains. Appl Biochem Biotechnol 165:719–727

    Article  CAS  Google Scholar 

  • Yadav J, Verma JP, Yadav SK, Tiwari KN (2011) Effect of salt concentration and pH on soil inhabiting fungus Penicillium citrinum Thom. for solubilization of tricalcium phosphate. Microbiol J 1:25–32

    Article  Google Scholar 

  • Yang J, Kloepper JW, Ryu C-M (2008) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4

    Article  Google Scholar 

  • Yang CH, Chai Q, Huang GB (2010) Root distribution and yield responses of wheat/maize intercropping to alternate irrigation in the arid areas of northwest China. Plant Soil Environ 56:253–262

    CAS  Google Scholar 

  • Yvas P, Rahi P, Chauhan A, Gulati A (2007) Phosphate solubilisation potential and stress tolerance of Eupenicillium parvum from tea soil. Mycol Res 111:931–938

    Article  Google Scholar 

  • Zarabi M, Alahdadi I, Akbari GA, Akbari GA (2011) A study on the effects of different biofertilizer combinations on yield, its components and growth indices of corn (Zea mays) under drought stress condition. Afr J Agric Res 6:681–685

    Google Scholar 

Download references

Acknowledgments

This work was supported by Projects CTM2008-03524, CTM2011-027797 (Ministerio de Ciencia e Innovación, España), P09-RNM-5196 (Project from the Junta de Andalucía, Proyecto de Excelencia), and EU COST FA0905 and FA1103. NV is grateful for the SABF PR2010-0422—Ministerio de Educacion, España and DAAD-Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Vassilev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vassilev, N., Eichler-Löbermann, B. & Vassileva, M. Stress-tolerant P-solubilizing microorganisms. Appl Microbiol Biotechnol 95, 851–859 (2012). https://doi.org/10.1007/s00253-012-4224-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4224-8

Keywords

Navigation