Skip to main content
Log in

Controlled synthesis of Sb2O3 nanoparticles by chemical reducing method in ethylene glycol

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Antimony trioxide (Sb2O3) nanoparticles with particle size range from 2 to 12 nm were successfully synthesized by chemical reducing method. Antimony trichloride was reduced by hydrazine with the presence of sodium hydroxide (NaOH) as catalyst in ethylene glycol at 120 °C for 1 h. Effects of hydrazine concentration ([N2H5OH]/[Sb3+] = 0.75, 5, 10, 20, and 30, when concentration of NaOH was fixed [NaOH]/[Sb3+] = 3) and NaOH concentration ([NaOH]/[Sb3+] = 0, 1, 3, and 5, when concentration of hydrazine was fixed [N2H5OH]/[Sb3+] = 10) on the particle size and shape of the Sb2O3 nanoparticles were investigated. Transmission electron microscope, selected area electron diffraction pattern, and high resolution electron microscope were employed to study the morphology and crystallinity of the nanoparticles. It was observed that the particle size decreased and remained constant when [N2H5OH]/[Sb3+]) ≥ 10 and [NaOH]/[Sb3+] = 3. Further study on the crystallinity and phase of the nanoparticles was assisted by X-ray diffractometer (XRD). XRD revealed a cubic phase of Sb2O3 (ICDD file no. 00-043-1071) with preferred plane of (622) and lattice spacing of 1.68 Å. Correlation between UV–visible absorption wavelengths of the nanoparticles and their sizes was established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Balela MDL (2008) Synthesis and characterization of cobalt nanoparticles prepared by liquid-phase reduction. Dissertation, Universiti Sains Malaysia

  • Brebua M, Jakab E, Sakata Y (2007) Effect of flame retardants and Sb2O3 synergist on the thermal decomposition of high-impact polystyrene and on its debromination by ammonia treatment. J Anal Appl Pyrolysis 79:346–352

    Article  Google Scholar 

  • Chen DH, Hsieh CH (2002) Synthesis of nickel nanoparticles in aqueous cationic surfactant solutions. J Mater Chem 12:2412–2415

    Article  CAS  Google Scholar 

  • Chen DH, Wang SR (2006) Protective agent-free synthesis of Ni–Ag core–shell nanoparticles. Mater Chem Phys 100:408–471

    Article  Google Scholar 

  • Chen DH, Wu SH (2000) Synthesis of Nickel nanoparticles in water-in-oil microemulsions. Chem Mater 12:1354–1360

    Article  CAS  Google Scholar 

  • Chen XY, Huh HS, Lee SW (2008) Hydrothermal synthesis of antimony oxychloride and oxide nanocrystals: Sb4O5Cl2, Sb8O11Cl2, and Sb2O3. J Solid State Chem 181:2127–2132

    Article  CAS  Google Scholar 

  • Cullity BD, Stock SR (2001) Elements of X-ray diffraction. Prentice Hall, New Jersey

    Google Scholar 

  • Deng Z, Tang F, Chen D, Meng X, Cao L, Zou B (2006) A simple solution route to single-crystalline Sb2O3 nanowires with rectangular cross sections. J Phys Chem B 110:18225–18230

    Article  CAS  Google Scholar 

  • Duh B (2002) Effect of antimony catalyst on solid-state polycondensation of poly(ethylene terephthalate). Polymer 43:3147–3154

    Article  CAS  Google Scholar 

  • Dzimitrowicz DJ, Goodenough JB, Wiseman PJ (1982) A.C. proton conduction in hydrous oxides. Mater Res Bull 17:971–979

    Article  CAS  Google Scholar 

  • Gleiter H (1989) Nanocrystalline materials. Prog Mater Sci 33:223–315

    Article  CAS  Google Scholar 

  • Hu YH, Zhang HH, Yang HM (2007) Direct synthesis of Sb2O3 nanoparticles via hydrolysis-precipitation method. J Alloys Compd 428:327–331

    Article  CAS  Google Scholar 

  • Iwanaga H, Fujii M, Takeuchi S (1998) Inter-leg angles in tetrapod ZnO particles. J Cryst Growth 183:190–195

    Article  CAS  Google Scholar 

  • Jakab E, Uddin MA, Bhaskar T, Sakata Y (2003) Thermal decomposition of flame-retarded high-impact polystyrene. J Anal Appl Pyrolysis 68–69:83–99

    Article  Google Scholar 

  • Jang J, Lee E (2000) Improvement of the flame retardancy of papersludge/polypropylene composite. Polym Test 20:7–13

    Article  Google Scholar 

  • Jha AK, Prasad K (2009a) Biosynthesis of Sb2O3 nanoparticles: a low-cost green approach. Biotechnol J 4:1582–1585

    Article  CAS  Google Scholar 

  • Jha AK, Prasad K (2009b) A green low-cost biosynthesis of Sb2O3 nanoparticles. Biochem Eng J 43:303–306

    Article  CAS  Google Scholar 

  • Laachachi A, Cochez M, Ferriol M, Leroy E, Lopez Cuesta JM, Oget N (2004) Influence of Sb2O3 particles as filler on the thermal stability and flammability properties of poly(methyl methacrylate) (PMMA). Polym Degrad Stab 85:641–646

    Article  CAS  Google Scholar 

  • Legouera M, Kostka P, Poulain M (2004) Glass formation in the Sb2O3ZnBr2 binary system. J Phys Chem Solids 65:901–906

    Article  CAS  Google Scholar 

  • Linderoth S, Pedersen MS (1994) Fe–Al2O3 nanocomposites prepared by high-energy ball milling. J Appl Phys 75:5867–5869

    Article  CAS  Google Scholar 

  • Liu YP, Zhang YH, Zhang MW, Zhang WH, Qian YT, Yang L, Wang CS, Chen ZW (1997) Preparation of nanocrystalline antimony oxide powders by use of γ-ray radiation–oxidization route. Mater Sci Eng B 49:42–45

    Article  Google Scholar 

  • Nalin M, Messaddeq Y, Ribeiro SJL, Poulain M, Briois V (2001) Photosensitivity in antimony based glasses. J Optoelectron Adv Mater 3:553–558

    CAS  Google Scholar 

  • Ozawa K, Sakka Y, Amano M (1998) Preparation and electrical conductivity of three types of antimonic acid films. J Mater Res 13:830–833

    Article  CAS  Google Scholar 

  • Pillep B, Behrens P, Schubert UA, Spengler J, Knozinger H (1999) Mechanical and thermal spreading of antimony oxides on the TiO2 surface: dispersion and properties of surface antimony oxide species. J Phys Chem B 103:9595–9603

    Article  CAS  Google Scholar 

  • Qiu KQ, Zhang RL (2006) Research on preparation of nanometer antimony trioxide from slag containing antimony by vacuum evaporation method. Vacuum 80:1016–1020

    Article  CAS  Google Scholar 

  • Sahoo NK, Apparao KVSR (1997) Process-parameter optimization of Sb2O3 films in the ultraviolet and visible region for interferometric applications. Appl Phys A Mater Sci Process 63:195–202

    Google Scholar 

  • Salata OV (2004) Applications of nanoparticles in biology and medicine. J Nanobiotechnol 2:1–6

    Article  Google Scholar 

  • Sato H, Kondo K, Tsuge S, Ohtani H, Sato N (1998) Mechanisms of thermal degradation of a polyester flame-retarded with antimony oxide/brominated polycarbonate studied by temperature-programmed analytical pyrolysis. Polym Degrad Stab 62:41–48

    Article  CAS  Google Scholar 

  • Tigau N, Ciupina V, Prodan G, Rusu GI, Vasile E (2004) Structural characterization of polycrystalline Sb2O3 thin films prepared by thermal vacuum evaporation technique. J Cryst Growth 269:392–400

    Article  CAS  Google Scholar 

  • Tong WD, Chen JY, Li XD, Feng JM, Cao Y, Yang ZJ, Zhang XD (1996) Preferred orientation of plasma sprayed hydroxyapatite coatings. J Mater Sci 31:3739–3742

    Article  CAS  Google Scholar 

  • Toraya H, Yoshimura M, Somiya S (1983) Hydrothermal oxidation of Hf metal chips in the preparation of monoclinic HfO2 powders. J Am Ceram Soc 66:148–150

    Article  CAS  Google Scholar 

  • Williamson GK, Hall WH (1953) X-ray line broadening from filed aluminum and wolfram. Acta Metall 1:22–31

    Article  CAS  Google Scholar 

  • Wu SH, Chen DH (2003) Synthesis and characterization of nickel nanoparticles by hydrazine reduction in ethylene glycol. J Colloid Interface Sci 259:282–286

    Article  CAS  Google Scholar 

  • Xie XL, Li RKY, Liu QX, Mai YW (2004) Structure-property relationships of in situ PMMA modified nano-sized antimony trioxide filled poly(vinyl chloride) nanocomposites. Polymer 45:2793–2802

    Article  CAS  Google Scholar 

  • Xu CH, Shi SQ, Surya C, Woo CH (2007) Synthesis of antimony oxide nano-particles by vapor transport and condensation. J Mater Sci 42:9855–9858

    Article  CAS  Google Scholar 

  • Ye CH, Wang GY, Kong MG, Zhang LD (2006) Controlled synthesis of Sb2O3 nanoparticles, nanowires, and nanoribbons. J Nanomater 2006:1–5

    Article  Google Scholar 

  • Zeng DW, Xie CS, Zhu BL, Song WL (2004a) Characteristics of Sb2O3 nanoparticles synthesized from antimony by vapor condensation method. Mater Lett 58:312–315

    Article  CAS  Google Scholar 

  • Zeng DW, Zhu BL, Xie CS, Song WL, Wang AH (2004b) Oxygen partial pressure effect on synthesis and characteristics of Sb2O3 nanoparticles. Mater Sci Eng A 366:332–337

    Article  Google Scholar 

  • Zhang JR, Gao L (2004) Synthesis and characterization of antimony-doped tin oxide (ATO) nanoparticles by a new hydrothermal method. Mater Chem Phys 87:10–13

    Article  CAS  Google Scholar 

  • Zhang ZL, Guo L, Wang WD (2001) Synthesis and characterization of antimony oxide nanoparticles. J Mater Res 16:803–805

    Article  CAS  Google Scholar 

  • Zhang YX, Li GH, Zhang J, Zhang LD (2004) Shape-controlled growth of one-dimensional Sb2O3 nanomaterials. Nanotechnology 15:762–765

    Article  CAS  Google Scholar 

  • Zhang S, Sun D, Fu YQ, Du HJ, Zhang Q (2005) Effect of sputtering target power on preferred orientation of the nc-TiN crystallites in nanocomposite nc-TiN/a-SiNx thin films. J Metastables Nanocryst Mater 23:175–178

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The first author would like to express her appreciation to USM RU-PRGS grant and USM fellowship for the scholarship and financial support on this project. One of the authors (KYC) would like to acknowledge financial support given by USM Short Term Grant (6039038).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuan Yew Cheong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chin, H.S., Cheong, K.Y. & Razak, K.A. Controlled synthesis of Sb2O3 nanoparticles by chemical reducing method in ethylene glycol. J Nanopart Res 13, 2807–2818 (2011). https://doi.org/10.1007/s11051-010-0169-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-010-0169-y

Keywords

Navigation