Skip to main content
Log in

Metagenomic cellulases highly tolerant towards the presence of ionic liquids—linking thermostability and halotolerance

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Cellulose is an important renewable resource for the production of bioethanol and other valuable compounds. Several ionic liquids (ILs) have been described to dissolve water-insoluble cellulose and/or wood. Therefore, ILs would provide a suitable reaction medium for the enzymatic hydrolysis of cellulose if cellulases were active and stable in the presence of high IL concentrations. For the discovery of novel bacterial enzymes with elevated stability in ILs, metagenomic libraries from three different hydrolytic communities (i.e. an enrichment culture inoculated with an extract of the shipworm Teredo navalis, a biogas plant sample and elephant faeces) were constructed and screened. Altogether, 14 cellulolytic clones were identified and subsequently assayed in the presence of six different ILs. The most promising enzymes, CelA2, CelA3 (both derived from the biogas plant) and CelA84 (derived from elephant faeces), showed high activities (up to 6.4 U/mg) in the presence of 30% (v/v) ILs. As these enzymes were moderately thermophilic and halotolerant, they retained 40% to 80% relative activity after 34 days in 4 M NaCl, and they were benchmarked with two thermostable enzymes, CelA from Thermotoga maritima and Cel5K from a metagenome library derived from Avachinsky crater in Kamchatka. These enzymes also exhibited high activity (up to 11.1 U/mg) in aqueous IL solutions (30% (v/v)). Some of the enzymes furthermore exhibited remarkable stability in 60% (v/v) IL. After 4 days, CelA3 and Cel5K retained up to 79% and 100% of their activity, respectively. Altogether, the obtained data suggest that IL tolerance appears to correlate with thermophilicity and halotolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adsul MG, Terwadkar AP, Varma AJ, Gokhale D (2009) Cellulases from Penicillium janthinellum mutants: solid-state production and their stability in ionic liquids. BioRes 4:1670–1681

    CAS  Google Scholar 

  • Anbarasan S, Janis J, Paloheimo M, Laitaoja M, Vuolanto M, Karimaki J, Vainiotalo P, Leisola M, Turunen O (2010) Effect of glycosylation and additional domains on the thermostability of a family 10 xylanase produced by Thermopolyspora flexuosa. Appl Environ Microbiol 76:356–360

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Google Scholar 

  • Bridgwater AV, Peacocke GVC (2000) Fast pyrolysis processes for biomass. Renew Sustain Energ Rev 4:1–73

    Article  CAS  Google Scholar 

  • Constantinescu D, Weingärtner H, Herrmann C (2007) Protein denaturation by ionic liquids and the Hofmeister series: a case study of aqueous solutions of ribonuclease A. Angew Chem Int Ed 46:8887–8889

    Article  CAS  Google Scholar 

  • Datta S, Holmes B, Park JI, Chen Z, Dibble DC, Hadi M, Blanch HW, Simmons BA, Sapra A (2010) Ionic liquid tolerant hyperthermophilic cellulases for biomass pretreatment and hydrolysis. Green Chem 12:338–345

    Article  CAS  Google Scholar 

  • Engel P, Mladenov R, Wulfhorst H, Jäger G, Spiess AC (2010) Point by point analysis: how ionic liquid affects the enzymatic hydrolysis of native and modified cellulose. Green Chem 12:1959–1966

    Article  CAS  Google Scholar 

  • Heinze T, Schwikal K, Barthel S (2005) Ionic liquids as reaction medium in cellulose functionalization. Macromol Biosci 5:520–525

    Article  CAS  Google Scholar 

  • Hofmeister F (1888) Zur Lehre von der Wirkung der Salze. Zweite Mittheilung. Arch Exp Pathol Pharmakol 24:247–260

    Article  Google Scholar 

  • Ilmberger N, Streit WR (2010) Screening for cellulase-encoding clones in metagenomic libraries. Methods Mol Biol 668:177–188

    Article  CAS  Google Scholar 

  • Kataeva I, Li XL, Chen H, Choi SK, Ljungdahl LG (1999) Cloning and sequence analysis of a new cellulase gene encoding CelK, a major cellulosome component of Clostridium thermocellum: evidence for gene duplication and recombination. J Bacteriol 181:5288–5295

    CAS  Google Scholar 

  • Kataeva IA, Uversky VN, Brewer JM, Schubot F, Rose JP, Wang BC, Ljungdahl LG (2004) Interactions between immunoglobulin-like and catalytic modules in Clostridium thermocellum cellulosomal cellobiohydrolase CbhA. Protein Eng Des Sel 17:759–762

    Article  CAS  Google Scholar 

  • Kaushik JK, Ogasahara K, Yutani K (2002) The unusually slow relaxation kinetics of the folding-unfolding of pyrrolidone carboxyl peptidase from a hyperthermophile, Pyrococcus furiosus. J Mol Biol 316:991–1003

    Article  CAS  Google Scholar 

  • Kunz W, Henle J, Ninham BW (2004) ‘Zur Lehre von der Wirkung der Salze’ (about the science of the effect of salts): Franz Hofmeister’s historical papers. Curr Opin Colloid Interface Sci 9:19–37

    Article  CAS  Google Scholar 

  • Liang C, Xue Y, Fioroni M, Rodriguez-Ropero F, Zhou C, Schwaneberg U, Ma Y (2011) Cloning and characterization of a thermostable and halo-tolerant endoglucanase from Thermoanaerobacter tengcongensis MB4. Appl Microbiol Biotechnol 89:315–325

    Article  CAS  Google Scholar 

  • Liebl W, Ruile P, Bronnenmeier K, Riedel K, Lottspeich F, Greif I (1996) Analysis of a Thermotoga maritima DNA fragment encoding two similar thermostable cellulases, CelA and CelB, and characterization of the recombinant enzymes. Microbiology 142:2533–2542

    Article  CAS  Google Scholar 

  • Maruyama T, Nagasawa S, Goto M (2002) Poly(ethylene glycol)-lipase complex that is catalytically active for alcoholysis reactions in ionic liquids. Biotechnol Lett 24:1341–1345

    Article  CAS  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Ogasahara K, Nakamura M, Nakura S, Tsunasawa S, Kato I, Yoshimoto T, Yutani K (1998) The unusually slow unfolding rate causes the high stability of pyrrolidone carboxyl peptidase from a hyperthermophile, Pyrococcus furiosus: equilibrium and kinetic studies of guanidine hydrochloride-induced unfolding and refolding. Biochemistry 37:17537–17544

    Article  CAS  Google Scholar 

  • Park S, Kazlauskas RJ (2001) Improved preparation and use of room-temperature ionic liquids in lipase-catalyzed enantio- and regioselective acylations. J Org Chem 66:8395–8401

    Article  CAS  Google Scholar 

  • Pereira JH, Sapra R, Volponi JV, Kozina CL, Simmons B, Adams PD (2009) Structure of endoglucanase Cel9A from the thermoacidophilic Alicyclobacillus acidocaldarius. Acta Crystallogr D Biol Crystallogr 65:744–750

    Article  Google Scholar 

  • Pottkämper J, Barthen P, Ilmberger N, Schwaneberg U, Schenk A, Schulte M, Ignatiev N, Streit WR (2009) Applying metagenomics for the identification of bacterial cellulases that are stable in ionic liquids. Green Chem 11:957–965

    Article  Google Scholar 

  • Remsing RC, Swatloski RP, Rogers RD, Moyna G (2006) Mechanism of cellulose dissolution in the ionic liquid 1-n-butyl-3-methylimidazolium chloride: a 13C and 35/37Cl NMR relaxation study on model systems. Chem Commun (Camb) 1271–1273

  • Sambrook J, Russel DW (2001) Molecular cloning, a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Sánchez C (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27:185–194

    Article  Google Scholar 

  • Shill K, Padmanabhan S, Xin Q, Prausnitz JM, Clark DS, Blanch HW (2011) Ionic liquid pretreatment of cellulosic biomass: enzymatic hydrolysis and ionic liquid recycle. Biotechnol Bioeng 108:511–520

    Article  CAS  Google Scholar 

  • Simon C, Daniel R (2010) Construction of small-insert and large-insert metagenomic libraries. Methods Mol Biol 668:39–50

    Article  CAS  Google Scholar 

  • Suen G, Weimer PJ, Stevenson DM, Aylward FO, Boyum J, Deneke J, Drinkwater C, Ivanova NN, Mikhailova N, Chertkov O, Goodwin LA, Currie CR, Mead D, Brumm PJ (2011) The complete genome sequence of Fibrobacter succinogenes S85 reveals a cellulolytic and metabolic specialist. PLoS ONE 6:e18814

    Article  CAS  Google Scholar 

  • Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellulose [correction of cellose] with ionic liquids. J Am Chem Soc 124:4974–4975

    Article  CAS  Google Scholar 

  • Unsworth LD, van der Oost J, Koutsopoulos S (2007) Hyperthermophilic enzymes—stability, activity and implementation strategies for high temperature applications. FEBS Journal 274:4044–4056

    Article  CAS  Google Scholar 

  • Vazquez-Figueroa E, Yeh V, Broering JM, Chaparro-Riggers JF, Bommarius AS (2008) Thermostable variants constructed via the structure-guided consensus method also show increased stability in salts solutions and homogeneous aqueous-organic media. Protein Eng Des Sel 21:673–680

    Article  CAS  Google Scholar 

  • Weiland N, Löscher C, Metzger R, Schmitz R (2010) Construction and screening of marine metagenomic libraries. Methods Mol Biol 668:51–65

    Article  CAS  Google Scholar 

  • Wu J, Zhang J, Zhang H, He J, Ren Q, Guo M (2004) Homogeneous acetylation of cellulose in a new ionic liquid. Biomacromolecules 5:266–268

    Article  CAS  Google Scholar 

  • Yang Z (2009) Hofmeister effects: an explanation for the impact of ionic liquids on biocatalysis. J Biotechnol 144:12–22

    Article  CAS  Google Scholar 

  • Zhao H (2006) Are ionic liquids kosmotropic or chaotropic? An evaluation of available thermodynamic parameters for quantifying the ion kosmotropicity of ionic liquids. J Chem Technol Biotechnol 81:877–891

    Article  CAS  Google Scholar 

  • Zverlov VV, Velikodvorskaya GV, Schwarz WH, Bronnenmeier K, Kellermann J, Staudenbauer WL (1998) Multidomain structure and cellulosomal localization of the Clostridium thermocellum cellobiohydrolase CbhA. J Bacteriol 180:3091–3099

    CAS  Google Scholar 

Download references

Acknowledgements

This work was in part supported by the BMBF-Kompetenznetzwerke Bioraffinerie 2021, the Fachagentur Nachwachsende Rohstoffe and the Merck Company (Darmstadt, Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang R. Streit.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 305 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ilmberger, N., Meske, D., Juergensen, J. et al. Metagenomic cellulases highly tolerant towards the presence of ionic liquids—linking thermostability and halotolerance. Appl Microbiol Biotechnol 95, 135–146 (2012). https://doi.org/10.1007/s00253-011-3732-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3732-2

Keywords

Navigation