Skip to main content
Log in

Isolation of Cellulose-Degrading Thermoanaerobacterium Strains from Thermophilic Methanogenic Microbial Communities

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

The cultures assigned to the genus Thermoanaerobacterium according to the partial sequencing of the 16S rRNA gene were isolated on CM3 and GS2 media at 55°С from two laboratory methanogenic thermophilic cellulolytic microbial communities producing biogas from various paper substrates. Cellulolytic activity was shown for three isolates grown on solid and in liquid media with microcrystalline cellulose and filter paper as the only substrates. In order to compare the phylogenetic relations between these isolates and the reference strains of T. thermosaccharolyticum (DSM 571, M0795, and TG57), it was shown that the isolates I2 and I3 belonged to one cluster, whereas the I1 isolate formed a separate branch on the phylogenetic tree. A unique feature of isolate I2 is the formation of an insoluble yellow affinity substance (YAS), which is usually produced by certain anaerobic cellulolytic bacteria, such as Clostridium thermocellum; it is considered a binding component between the cellulase enzyme and its substrate, cellulose. Our results confirmed that cellulolytic T. thermosaccharolyticum strains predominated among cellulose-degrading bacteria within the thermophilic microbial communities converting the paper substrates into biogas. Although the type strain T. thermosaccharolyticum DSM 571 lacks cellulolytic capacity, our results are consistent with the recent data on the ability of several T. thermosaccharolyticum strains to degrade cellulose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Atlas, R.M., Handbook of Microbiological Media, N.Y.: CRC, 2004.

    Book  Google Scholar 

  2. Bergey’s Manual of Systematic Bacteriology: Volume 3: The Firmicutes, De Vos, P., Garrity, G.M., Jones, D., Krieg, N.R., Ludwig, W., Rainey, F.A., Schleifer, K.-H., and Whitman, W.B., Eds., Athens, USA: Springer, 2009.

  3. He, Q., Hemme, C.L., Jiang, H., He, Z., and Zhou, J., Mechanisms of enhanced cellulosic bioethanol fermentation by co-cultivation of Clostridium and Thermoanaerobacter spp., Bioresour. Technol., 2011, vol. 102, pp. 9586–9592.

    Article  CAS  Google Scholar 

  4. Jiang, H., Gadow, S.I., Tanaka, Y., Cheng, J., and Yu-You, L., Improved cellulose conversion to bio-hydrogen with thermophilic bacteria and characterization of microbial community in continuous bioreactor, Biomass Bioenergy., 2015, vol. 75, pp. 57−64.

    Article  CAS  Google Scholar 

  5. Johnson, E.A., Madia, A., and Demain, A.L., Chemically defined minimal medium for growth of the anaerobic cellulolytic thermophile Clostridium thermocellum, Appl. Environ. Microbiol., 1981, vol. 41, pp. 1060–1062.

    Article  CAS  Google Scholar 

  6. Koeck, D.E., Maus, I., Wibberg, D., Winkler, A., Zverlov, V.V., Liebl, W., Pühler, A., Schwarz, W.H., and Schlüter, A., Draft genome sequence of Herbinix hemicellulosilytica T3/55T, a new thermophilic cellulose degrading bacterium isolated from a thermophilic biogas reactor, J. Biotechnol., 2015, vol. 214, pp. 59–60.

    Article  CAS  Google Scholar 

  7. Koeck, D.E., Pechtl, A., Zverlov, V.V., and Schwarz, W.H., Genomics of cellulolytic bacteria, Curr. Opin. Biotechnol., 2014, vol. 29, pp. 171–183.

    Article  CAS  Google Scholar 

  8. Kopečný, J. and Hodrova, B., The effect of yellow affinity substance on cellulases of Ruminococcus flavefaciens, Lett. Appl. Microbiol., 1997, vol. 25, pp. 191–196.

    Article  Google Scholar 

  9. Li, T., Zhang, C., Yang, K.L., and He, J., Unique genetic cassettes in a Thermoanaerobacterium contribute to simultaneous conversion of cellulose and monosugars into butanol, Sci. Adv., 2018, vol. 4, e1701475.

    Article  Google Scholar 

  10. Ljungdahl, L.G., Pettersson, B., Eriksson, K.E., and Wiegel, J., A yellow affinity substance involved in the cellulolytic system of Clostridium thermocellum., Curr. Microbiol., 1983, vol. 9, pp. 195–199.

    Article  CAS  Google Scholar 

  11. Lv, W. and Yu, Z., Isolation and characterization of two thermophilic cellulolytic strains of Clostridium thermocellum from a compost sample, J. Appl. Microbiol., 2013, vol. 114, pp. 1001–1007.

    Article  CAS  Google Scholar 

  12. Lynd, L.R., Weimer, P.J., Van Zyl, W.H., and Pretorius, I.S., Microbial cellulose utilization: fundamentals and biotechnology, Microbiol. Mol. Biol. R., 2002, vol. 66, pp. 506–577.

    Article  CAS  Google Scholar 

  13. O-Thong, S., Prasertsan, P., Karakashev, D., and Angelidaki, I., Thermophilic fermentative hydrogen production by the newly isolated Thermoanaerobacterium thermosaccharolyticum PSU-2, Int. J. Hydrogen Energ., 2008, vol. 33, pp. 1204–1214.

    Article  CAS  Google Scholar 

  14. Pei, J., Pang, Q., Zhao, L., Fan, S., and Shi, H., Thermoanaerobacterium thermosaccharolyticum β-glucosidase: a glucose-tolerant enzyme with high specific activity for cellobiose, Biotechnol. Biofuels, 2012, vol. 5, p. 31.

    Article  CAS  Google Scholar 

  15. Podosokorskaya, O.A., Merkel, A.Y., Kolganova, T.V., Chernyh, N.A., Miroshnichenko, M.L., Bonch-Osmolovskaya, E.A., and Kublanov, I.V., Fervidobacterium riparium sp. nov., a thermophilic anaerobic cellulolytic bacterium isolated from a hot spring, Int. J. Syst. Evol. Micro-biol., 2011, vol. 61, pp. 2697–2701.

    Article  CAS  Google Scholar 

  16. Prokudina, L.I., Osmolovskiy, A.A., Egorova, M.A., Malakhova, D.V., Netrusov, A.I., and Tsavkelova, E.A., Biodegradation of cellulose-containing substrates by micromycetes followed by bioconversion into biogas, Appl. Biochem. Microbiol., 2016, vol. 52, pp. 190–198.

    Article  CAS  Google Scholar 

  17. Rabinovich, M.L. and Mel’nik, M.S., Progress in investigation of cellulolytic enzymes and the mechanism for biodegradation of highly ordered cellulose forms, Usp. Biol. Khim., 2000, vol. 40, pp. 205–266.

    CAS  Google Scholar 

  18. Shaw, A.J., Hogsett, D.A., and Lynd, L.R., Natural competence in Thermoanaerobacter and Thermoanaerobacterium species, Appl. Environ. Microbiol., 2010, vol. 76, pp. 4713–4719.

    Article  CAS  Google Scholar 

  19. Sizova, M.V., Izquierdo, J.A., Panikov, N.S., and Lynd, L.R., Cellulose- and xylan-degrading thermophilic anaerobic bacteria from biocompost, Appl. Environ. Microbiol., 2011, vol. 77, pp. 2282–2291.

    Article  CAS  Google Scholar 

  20. Sun, Y. and Cheng, J., Hydrolysis of lignocellulosic materials for ethanol production: a review, Bioresour. Technol., 2002, vol. 83, pp. 1–11.

    Article  CAS  Google Scholar 

  21. Tsavkelova, E.A. and Netrusov, A.I., Biogas production from cellulose-containing substrates (a review), Appl. Biochem. Microbiol., 2012, vol. 48, pp. 421–433.

    Article  CAS  Google Scholar 

  22. Tsavkelova, E.A., Egorova, M.A., Petrova, E.V., and Netrusov, A.I., Biogas production by microbial communities via decomposition of cellulose and food waste, Appl. Biochem. Microbiol., 2012, vol. 48, pp. 377–384.

    Article  CAS  Google Scholar 

  23. Tsavkelova, E., Prokudina (Popova), L., Egorova, M., Leontieva, M., Malakhova, D., and Netrusov, A., The structure of the anaerobic thermophilic microbial community for the bioconversion of the cellulose-containing substrates into biogas, Process Biochem., 2018, vol. 66, pp. 183–196.

    Article  CAS  Google Scholar 

  24. VanFossen, A.L., Lewis, D.L., Nichols, J.D., and Kelly, R.M., Polysaccharide degradation and synthesis by extremely thermophilic anaerobes, Ann. N.Y. Acad. Sci., 2008, vol. 1125, pp. 322–337.

    Article  CAS  Google Scholar 

  25. Velikodvorskaya, G.A., Chekanovskaya, L.A., Lunina, N.A., Dvortsov, I.A., Zverlov, V.V., Sergienko, O.V., and Lunin, V.G., Family 28 carbohydrate-binding module of the thermostable endo-1,4-β-glucanase CelD from Caldicellulosiruptor bescii maximizes enzyme activity and irreversibly binds to amorphous cellulose, Mol. Biol., 2013, vol. 47, pp. 581–586.

    Article  CAS  Google Scholar 

  26. Vishnivetskaya, T.A., Hamilton-Brehm, S.D., Podar, M., Mosher, J.J., Palumbo, A.V., Phelps, T.J., Keller, M., and Elkins, J.G., Community analysis of plant biomass-degrading microorganisms from Obsidian Pool, Yellowstone National Park, Microb. Ecol., 2015, vol. 69, pp. 333–345.

    Article  CAS  Google Scholar 

  27. Zarafeta, D., Kissas, D., Sayer, C., Gudbergsdottir, S.R., Ladoukakis, E., Isupov, M.N., Chatziioannou, A., Peng, X., Littlechild, J.A., Skretas, G., and Kolisis, F.N., Discovery and characterization of a thermostable and highly halotolerant GH5 cellulase from an icelandic hot spring isolate, PLoS One, 2016, vol. 11, e0146454.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

L.I. Popova thanks the German Academy Exchange Service (Deutscher Akademischer Austauschdienst, DAAD) and the Federation of European Microbiological Societies (FEMS) for a scholarship that enabled the collaboration with the Microbiology Department of Rostock University (Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Tsavkelova.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain any studies involving humans or animals performed by any of the authors.

CONFLICT OF INTERESTS

The authors declare that they have no conflict of interests.

Additional information

Translated by A. Oleskin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popova, L.I., Bahl, H., Egorova, M.A. et al. Isolation of Cellulose-Degrading Thermoanaerobacterium Strains from Thermophilic Methanogenic Microbial Communities. Microbiology 90, 158–165 (2021). https://doi.org/10.1134/S0026261721020090

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261721020090

Keywords:

Navigation