Skip to main content
Log in

Improving lysine production by Corynebacterium glutamicum through DNA microarray-based identification of novel target genes

  • Genomics and Proteomics
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

For the biotechnological production of l-lysine, mainly strains of Corynebacterium glutamicum are used, which have been obtained by classical mutagenesis and screening or selection or by metabolic engineering. Gene targets for the amplification and deregulation of the lysine biosynthesis pathway, for the improvement of carbon precursor supply and of nicotinamide adenine dinucleotide phosphate (reduced form) (NADPH) regeneration, are known. To identify novel target genes to improve lysine production, the transcriptomes of the classically obtained lysine producing strain MH20-22B and several other C. glutamicum strains were compared. As lysine production by the classically obtained strain, which possesses feedback-resistant aspartokinase and is leucine auxotrophic, exceeds that of a genetically defined leucine auxotrophic wild-type derivative possessing feedback-resistant aspartokinase, additional traits beneficial for lysine production are present. NCgl0855, putatively encoding a methyltransferase, and the amtA-ocd-soxA operon, encoding an ammonium uptake system, a putative ornithine cyclodeaminase and an uncharacterized enzyme, were among the genes showing increased expression in the classically obtained strain irrespective of the presence of feedback-resistant aspartokinase. Lysine production could be improved by about 40% through overexpression of NCgl0855 or the amtA-ocd-soxA operon. Thus, novel target genes for the improvement of lysine production could be identified in a discovery-driven approach based on global gene expression analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ando S, Ochiai K, Yokoi H, Hashimoto S, Yonetani Y (2002) Novel glucose-6-phosphate dehydrogenase. Patent WO0198472 (2002-01-02)

  • Becker J, Klopprogge C, Zelder O, Heinzle E, Wittmann C (2005) Amplified expression of fructose 1,6-bisphosphatase in Corynebacterium glutamicum increases in vivo flux through the pentose phosphate pathway and lysine production on different carbon sources. Appl Environ Microbiol 71:8587–8596

    PubMed  PubMed Central  CAS  Google Scholar 

  • Bott M, Niebisch A (2005) Respiratory energy metabolism. In: Eggeling L, Bott M (eds) Handbook of Corynebacterium glutamicum. CRC Press, Boca Raton, USA, pp 305–332

    Google Scholar 

  • Broer S, Eggeling L, Kramer R (1993) Strains of Corynebacterium glutamicum with different lysine productivities may have different lysine excretion systems. Appl Environ Microbiol 59:316–321

    PubMed  PubMed Central  CAS  Google Scholar 

  • Eggeling L, Bott M (2005) Handbook of Corynebacterium glutamicum. CRC Press, Boca Raton, USA

    Google Scholar 

  • Eikmanns BJ, Follettie MT, Griot MU, Sinskey AJ (1989) The phosphoenolpyruvate carboxylase gene of Corynebacterium glutamicum: molecular cloning, nucleotide sequence, and expression. Mol Gen Genet 218:330–339

    PubMed  CAS  Google Scholar 

  • Eikmanns BJ, Thum-Schmitz N, Eggeling L, Lüdtke KU, Sahm H (1994) Nucleotide sequence, expression and transcriptional analysis of the Corynebacterium glutamicum gltA gene encoding citrate synthase. Microbiology 140:1817–1828

    PubMed  CAS  Google Scholar 

  • Georgi T, Rittmann D, Wendisch VF (2005) Lysine and glutamate production by Corynebacterium glutamicum on glucose, fructose and sucrose: Roles of malic enzyme and fructose-1,6-bisphosphatase. Metab Eng 7:291–301

    PubMed  CAS  Google Scholar 

  • Glansdorff N, Xu Y (2007) Microbial arginine biosynthesis: pathway, regulation and industrial production. In: Wendisch VF (ed) Amino acid biosynthesis —pathways, regulation and metabolic engineering. Springer, Heidelberg, Germany. DOI https://doi.org/10.1007/7171_2006_061

    Google Scholar 

  • Gornall AG, Bardawill CJ, David MM (1949) Determination of serum proteins by means of biuret reaction. J Biol Chem 177:751–766

    PubMed  CAS  Google Scholar 

  • Gourdon P, Baucher MF, Lindley ND, Guyonvarch A (2000) Cloning of the malic enzyme gene from Corynebacterium glutamicum and role of the enzyme in lactate metabolism. Appl Environ Microbiol 66:2981–2987

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580

    PubMed  CAS  Google Scholar 

  • Hayashi M, Ohnishi J, Mitsuhashi S, Yonetani Y, Hashimoto S, Ikeda M (2006) Transcriptome analysis reveals global expression changes in an industrial l-lysine producer of Corynebacterium glutamicum. Biosci Biotechnol Biochem 70:546–550

    PubMed  CAS  Google Scholar 

  • Ishige T, Krause M, Bott M, Wendisch VF, Sahm H (2003) The phosphate starvation stimulon of Corynebacterium glutamicum determined by DNA microarray analyses. J Bacteriol 185:4519–4529

    PubMed  PubMed Central  CAS  Google Scholar 

  • Jakoby M, Kramer R, Burkovski A (1999) Nitrogen regulation in Corynebacterium glutamicum: isolation of genes involved and biochemical characterization of corresponding proteins. FEMS Microbiol Lett 173:303–310

    PubMed  CAS  Google Scholar 

  • Jakoby M, Nolden L, Meier-Wagner J, Kramer R, Burkovski A (2000) AmtR, a global repressor in the nitrogen regulation system of Corynebacterium glutamicum. Mol Microbiol 37:964–977

    PubMed  CAS  Google Scholar 

  • Jetten MS, Sinskey AJ (1993) Characterization of phosphoenolpyruvate carboxykinase from Corynebacterium glutamicum. FEMS Microbiol Lett 111:183–188

    CAS  Google Scholar 

  • Kabus A, Niebisch A, Bott M (2007) Role of cytochrome bd oxidase from Corynebacterium glutamicum for growth and lysine production. Appl Environ Microbiol 73:861–868

    PubMed  CAS  Google Scholar 

  • Kalinowski J et al (2003) The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of l-aspartate-derived amino acids and vitamins. J Biotechnol 104:5–25

    CAS  PubMed  Google Scholar 

  • Kelle R, Hermann T, Bathe B (2005) l-Lysine production. In: Eggeling L, Bott M (eds) Handbook of Corynebacterium glutamicum. CRC Press, Boca Raton, USA, pp 465–488

    Google Scholar 

  • Kohlhaw GB (1988) Alpha-isopropylmalate synthase from yeast. Methods Enzymol 166:414–423

    PubMed  CAS  Google Scholar 

  • Kronemeyer W, Peekhaus N, Kramer R, Sahm H, Eggeling L (1995) Structure of the gluABCD cluster encoding the glutamate uptake system of Corynebacterium glutamicum. J Bacteriol 177:1152–1158

    PubMed  PubMed Central  CAS  Google Scholar 

  • Lange C, Rittmann D, Wendisch VF, Bott M, Sahm H (2003) Global expression profiling and physiological characterization of Corynebacterium glutamicum grown in the presence of l-valine. Appl Environ Microbiol 69:2521–2532

    PubMed  PubMed Central  CAS  Google Scholar 

  • Marienhagen J, Kennerknecht N, Sahm H, Eggeling L (2005) Functional Analysis of All Aminotransferase Proteins Inferred from the Genome Sequence of Corynebacterium glutamicum. J Bacteriol 187:7639–7646

    PubMed  PubMed Central  CAS  Google Scholar 

  • Marx A, de Graaf AA, Wiechert W, Eggeling L, Sahm H (1996) Determination of the fluxes in the central metabolism of Corynebacterium glutamicum by nuclear magnetic resonance spectroscopy combined with metabolite balancing. Biotechnol Bioeng 49:111–129

    PubMed  CAS  Google Scholar 

  • Marx A, Striegel K, de Graaf AA, Sahm H, Eggeling L (1997) Response of the central metabolism of Corynebacterium glutamicum to different flux burdens. Biotechnol Bioeng 56:168–180

    PubMed  CAS  Google Scholar 

  • Marx A, Eikmanns BJ, Sahm H, de Graaf AA, Eggeling L (1999) Response of the central metabolism in Corynebacterium glutamicum to the use of an NADH-dependent glutamate dehydrogenase. Metab Eng 1:35–48

    PubMed  CAS  Google Scholar 

  • Marx A, Hans S, Mockel B, Bathe B, de Graaf AA (2003) Metabolic phenotype of phosphoglucose isomerase mutants of Corynebacterium glutamicum. J Biotechnol 104:185–197

    PubMed  CAS  Google Scholar 

  • Marx A, Wendisch VF, Kelle R, Buchholz S (2006) Towards integration of biorefinery and microbial amino acid production. In: Kamm B, Gruber PR, Kamm M (eds) Biorefineries—industrial processes and products. Status quo and future directions. Wiley-VCH, Weinheim, Germany, pp 201–216

    Google Scholar 

  • Nakayama K (1972) Lysine and diaminopimelic acid. In: Yamada K, Kinoshita S, Tsunoda T, Aida K (eds) Halsted Press, New York, NY, USA, pp 369–398

  • Netzer R, Peters-Wendisch P, Eggeling L, Sahm H (2004) Cometabolism of a nongrowth substrate: l-serine utilization by Corynebacterium glutamicum. Appl Environ Microbiol 70:7148–7155

    PubMed  PubMed Central  CAS  Google Scholar 

  • Niebisch A, Bott M (2003) Purification of a cytochrome bc1-aa3 supercomplex with quinol oxidase activity from Corynebacterium glutamicum. Identification of a fourth subunity of cytochrome aa3 oxidase and mutational analysis of diheme cytochrome c1. J Biol Chem 278:4339–4346

    PubMed  CAS  Google Scholar 

  • Ohnishi J, Hayashi M, Mitsuhashi S, Ikeda M (2003) Efficient 40 degrees C fermentation of l-lysine by a new Corynebacterium glutamicum mutant developed by genome breeding. Appl Microbiol Biotechnol 62:69–75

    PubMed  CAS  Google Scholar 

  • Ohnishi J, Katahira R, Mitsuhashi S, Kakita S, Ikeda M (2005) A novel gnd mutation leading to increased l-lysine production in Corynebacterium glutamicum. FEMS Microbiol Lett 242:265–274

    PubMed  CAS  Google Scholar 

  • Patek M (2007) Branched-chain amino acids. In: Wendisch VF (ed) Amino acid biosynthesis—pathways, regulation and metabolic engineering. Springer, Heidelberg, Germany. DOI https://doi.org/10.1007/7171_2006_070

    Google Scholar 

  • Patek M, Krumbach K, Eggeling L, Sahm H (1994) Leucine synthesis in Corynebacterium glutamicum: enzyme activities, structure of leuA, and effect of leuA inactivation on lysine synthesis. Appl Environ Microbiol 60:133–140

    PubMed  PubMed Central  CAS  Google Scholar 

  • Peters-Wendisch PG, Wendisch VF, de Graaf AA, Eikmanns BJ, Sahm H (1996) C3-carboxylation as an anaplerotic reaction in phosphoenolpyruvate carboxylase-deficient Corynebacterium glutamicum. Arch Microbiol 165:387–396

    PubMed  CAS  Google Scholar 

  • Peters-Wendisch PG, Wendisch VF, Paul S, Eikmanns BJ, Sahm H (1997) Pyruvate carboxylase as an anaplerotic enzyme in Corynebacterium glutamicum. Microbiology 143:1095–1103

    CAS  PubMed  Google Scholar 

  • Peters-Wendisch PG, Kreutzer C, Kalinowski J, Patek M, Sahm H, Eikmanns BJ (1998) Pyruvate carboxylase from Corynebacterium glutamicum: characterization, expression and inactivation of the pyc gene. Microbiology 144:915–927

    PubMed  CAS  Google Scholar 

  • Peters-Wendisch PG et al (2001) Pyruvate carboxylase is a major bottleneck for glutamate and lysine production by Corynebacterium glutamicum. J Mol Microbiol Biotechnol 3:295–300

    PubMed  CAS  Google Scholar 

  • Pfefferle W, Mockel B, Bathe B, Marx A (2003) Biotechnological manufacture of lysine. Adv Biochem Eng Biotechnol 79:59–112

    PubMed  CAS  Google Scholar 

  • Polen T, Wendisch VF (2004) Genomewide expression analysis in amino acid-producing bacteria using DNA microarrays. Appl Biochem Biotechnol 118:215–232

    PubMed  CAS  Google Scholar 

  • Polen T, Rittmann D, Wendisch VF, Sahm H (2003) DNA microarray analyses of the long-term adaptive response of Escherichia coli to acetate and propionate. Appl Environ Microbiol 69:1759–1774

    PubMed  PubMed Central  CAS  Google Scholar 

  • Riedel C, Rittmann D, Dangel P, Mockel B, Petersen S, Sahm H, Eikmanns BJ (2001) Characterization of the phosphoenolpyruvate carboxykinase gene from Corynebacterium glutamicum and significance of the enzyme for growth and amino acid production. J Mol Microbiol Biotechnol 3:573–583

    PubMed  CAS  Google Scholar 

  • Rittmann D, Schaffer S, Wendisch VF, Sahm H (2003) Fructose-1,6-bisphosphatase from Corynebacterium glutamicum: expression and deletion of the fbp gene and biochemical characterization of the enzyme. Arch Microbiol 180:285–292

    PubMed  CAS  Google Scholar 

  • Sahm H, Eggeling L, de Graaf AA (2000) Pathway analysis and metabolic engineering in Corynebacterium glutamicum. Biol Chem 381:899–910

    PubMed  CAS  Google Scholar 

  • Sambrook J, Russell D (2001) Molecular cloning. A laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA

    Google Scholar 

  • Sauer U, Eikmanns BJ (2005) The PEP-pyruvate-oxaloacetate node as the switch point for carbon flux distribution in bacteria. FEMS Microbiol Rev 29:765–794

    PubMed  CAS  Google Scholar 

  • Schäfer A, Tauch A, Jäger W, Kalinowski J, Thierbach G, Puhler A (1994) Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145:69–73

    PubMed  Google Scholar 

  • Schrumpf B, Schwarzer A, Kalinowski J, Puhler A, Eggeling L, Sahm H (1991) A functionally split pathway for lysine synthesis in Corynebacterium glutamicum. J Bacteriol 173:4510–4516

    PubMed  PubMed Central  CAS  Google Scholar 

  • Schrumpf B, Eggeling L, Sahm H (1992) Isolation and prominent characteristics of an l-lysine hyperproducing strain of Corynebacterium glutamicum. Appl Microbiol Biotechnol 37:566–571

    CAS  Google Scholar 

  • Shimizu H, Hirasawa T (2007) Production of glutamate and glutamate-related amino acids: molecular mechanism analysis and metabolic engineering. In: Wendisch VF (ed) Amino acid biosynthesis—pathways, regulation and metabolic engineering, Springer, Heidelberg, Germany (in press). DOI https://doi.org/10.1007/7171_2006_064

    Google Scholar 

  • Siewe RM, Weil B, Burkovski A, Eikmanns BJ, Eikmanns M, Kramer R (1996) Functional and genetic characterization of the (methyl)ammonium uptake carrier of Corynebacterium glutamicum. J Biol Chem 271:5398–5403

    PubMed  CAS  Google Scholar 

  • Simic P, Willuhn J, Sahm H, Eggeling L (2002) Identification of glyA (encoding serine hydroxymethyltransferase) and its use together with the exporter ThrE to increase l-threonine accumulation by Corynebacterium glutamicum. Appl Environ Microbiol 68:3321–3327

    PubMed  PubMed Central  CAS  Google Scholar 

  • Stansen C, Uy D, Delaunay S, Eggeling L, Goergen JL, Wendisch VF (2005) Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production. Appl Environ Microbiol 71:5920–5928

    PubMed  PubMed Central  CAS  Google Scholar 

  • Suzuki H, Tamamura R, Yajima S, Kanno M, Suguro M (2005) Corynebacterium sp. U-96 contains a cluster of genes of enzymes for the catabolism of sarcosine to pyruvate. Biosci Biotechnol Biochem 69:952–956

    PubMed  CAS  Google Scholar 

  • Tauch A, Hermann T, Burkovski A, Kramer R, Puhler A, Kalinowski J (1998) Isoleucine uptake in Corynebacterium glutamicum ATCC 13032 is directed by the brnQ gene product. Arch Microbiol 169:303–312

    PubMed  CAS  Google Scholar 

  • Thierbach G, Kalinowski J, Bachmann B, Puhler A (1990) Cloning of a DNA fragment from Corynebacterium glutamicum conferring aminoethyl cysteine resistance and feedback resistance to aspartokinase. Appl Microbiol Biotechnol 32:443–448

    PubMed  CAS  Google Scholar 

  • Trickey P, Wagner MA, Jorns MS, Mathews FS (1999) Monomeric sarcosine oxidase: structure of a covalently flavinylated amine oxidizing enzyme. Structure 7:331–345

    PubMed  CAS  Google Scholar 

  • Tricot C, Stalon V, Legrain C (1991) Isolation and characterization of Pseudomonas putida mutants affected in arginine, ornithine and citrulline catabolism: function of the arginine oxidase and arginine succinyltransferase pathways. J Gen Microbiol 137:2911–2918

    PubMed  CAS  Google Scholar 

  • Wendisch VF (2003) Genome-wide expression analysis in Corynebacterium glutamicum using DNA microarrays. J Biotechnol 104:273–285

    PubMed  CAS  Google Scholar 

  • Wendisch VF (2006) Genetic regulation of Corynebacterium glutamicum metabolism. J Microbiol Biotechnol 16:999

    CAS  Google Scholar 

  • Wendisch VF, Zimmer DP, Khodursky A, Peter B, Cozzarelli N, Kustu S (2001) Isolation of Escherichia coli mRNA and comparison of expression using mRNA and total RNA on DNA microarrays. Anal Biochem 290:205–213

    PubMed  CAS  Google Scholar 

  • Wendisch VF, Bott M, Eikmanns BJ (2006a) Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for biotechnological production of organic acids and amino acids. Curr Opin Microbiol 9:268–274

    PubMed  CAS  Google Scholar 

  • Wendisch VF, Bott M, Kalinowski J, Oldiges M, Wiechert W (2006b) Emerging Corynebacterium glutamicum systems biology. J Biotechnol 124:74

    PubMed  CAS  Google Scholar 

  • Wittmann C, Becker J (2007) The l-lysine story: from metabolic pathways to industrial production. In: Wendisch VF (ed) Amino acid biosynthesis—pathways, regulation and metabolic engineering. Springer, Heidelberg, Germany. DOI https://doi.org/10.1007/7171_2006_089

    Google Scholar 

  • Wittmann C, de Graaf AA (2005) Metabolic flux analysis in Corynebacterium glutamicum. In: Eggeling L, Bott M (eds) Handbook of Corynebacterium glutamicum. CRC Press, Boca Raton, USA, pp 277–304

    Google Scholar 

Download references

Acknowledgments

Financial support of R&D Feed Additives of Degussa AG, Halle-Künsebeck, Germany is gratefully acknowledged. We thank Hermann Sahm for his support throughout the project and Doris Rittmann for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker F. Wendisch.

Additional information

Dedicated to Prof. Dr. Hermann Sahm on the occasion of his 65th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sindelar, G., Wendisch, V.F. Improving lysine production by Corynebacterium glutamicum through DNA microarray-based identification of novel target genes. Appl Microbiol Biotechnol 76, 677–689 (2007). https://doi.org/10.1007/s00253-007-0916-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-0916-x

Keywords

Navigation