Skip to main content
Log in

Cytochrome P450 monooxygenases involved in anthracene metabolism by the white-rot basidiomycete Phanerochaete chrysosporium

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Cytochrome P450 monooxygenases (P450s) involved in anthracene metabolism by the white-rot basidiomycete Phanerochaete chrysosporium were identified by comprehensive screening of both catalytic potentials and transcriptomic profiling. Functional screening of P. chrysosporium P450s (PcCYPs) revealed that 14 PcCYP species catalyze stepwise conversion of anthracene to anthraquinone via intermediate formation of anthrone. Moreover, transcriptomic profiling explored using a complementary DNA microarray system demonstrated that 12 PcCYPs are up-regulated in response to exogenous addition of anthracene. Among the up-regulated PcCYPs, five species showed catalytic activity against anthracene. Based upon both catalytic and transcriptional properties, these five species are most likely to play major roles in anthracene metabolic processes in vivo. Thus, the combination of functional screening and a microarray system may provide a novel strategy for obtaining a thorough understanding of the catalytic functions and biological impacts of PcCYPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alexander Z, Stephan CS, Jorg S (2003) Construction and usage of a onefold-coverage shotgun DNA microarray to characterize the metabolism of the archaeon Haloferax volcanii. Mol Microbiol 48:1089–1105

    Article  Google Scholar 

  • Azenbacher P, Niwa T, Tolbert LM, Sirimanne SR, Guengerich FP (1996) Oxidation of 9-alkylanthracenes by cytochrome P450 2B1, horseradish peroxidase, and iron tetraphenylporphine/iodosylbenzene systems: anaerobic and aerobic mechanisms. Biochem 35:2512–2520

    Article  Google Scholar 

  • Bezalel L, Hadar Y, Fu PP, Freeman JP, Cemiglia CE (1996a) Metabolism of phenanthrene by the white rot fungus Pleurotus ostreatus. Appl Environ Microbiol 62:2547–2553

    CAS  Google Scholar 

  • Bezalel L, Hadar Y, Fu PP, Freeman JP, Cerniglia CE (1996b) Initial oxidation products in the metabolism of pyrene, anthracene, fluorine, and dibenzothiophenone by the white-rot fungus Pleurotus ostreatus. Appl Environ Microbiol 62:2554–2559

    CAS  Google Scholar 

  • Bezalel L, Hadar Y, Cemiglia CE (1997) Enzymatic mechanisms involved in phenanthrene degradation by the white rot fungus Pleurotus ostreatus. Appl Environ Microbiol 63:2495–2501

    CAS  Google Scholar 

  • Bogan BW, Lamar RT, Hammel KE (1996) Fluorene oxidation in vivo by Phanerochaete chrysosporium and in vitro during manganese peroxidase-dependent lipid peroxidation. Appl Environ Microbiol 62:1788–1792

    CAS  Google Scholar 

  • Bumpus JA, Aust SD (1987) Biodegradation of environmental pollutants by the white rot fungus Phanerochaete chrysosporium: involvement of the lignin degrading system. Bioessays 6:166–170

    Article  CAS  Google Scholar 

  • Cerniglia CE, Yang SK (1984) Stereo selective metabolism of anthracene and phenanthrene by the fungus Cunninghamella elegans. Appl Environ Microbiol 47:119–124

    CAS  Google Scholar 

  • Collins PJ, Kotterman M, Field JA, Dobson A (1996) Oxidation of anthracene and benzo(a)pyrene by laccases from Trametes versicolor. Appl Environ Microbiol 62:4563–4567

    CAS  Google Scholar 

  • Crawford RL (1981) Lignin biodegradation and transformation. Wiley, New York

    Google Scholar 

  • Deng J, Carbone I, Dean RA (2007) The evolutionary history of cytochrome P450 genes in four filamentous ascomycetes. BMC Evol Biol 7:30

    Article  Google Scholar 

  • Doddapaneni H, Chakraborty R, Yadav JS (2005) Genome-wide structural and evolutionary analysis of the P450 monooxygenase genes (P450ome) in the white rot fungus Phanerochaete chrysosporium: evidence for gene duplications and extensive gene clustering. BMC Genomics 6:92

    Article  Google Scholar 

  • Eibes G, Cajthaml T, Moreira MT, Feijoo G, Lema JM (2006) Enzymatic degradation of anthracene, dibenzothiophene and pyrene by manganese peroxidase in media containing acetone. Chemosphere 64:408–414

    Article  CAS  Google Scholar 

  • Eriksson KE, Blanchette L, Ander RAP (1990) Biodegradation of lignin. In: Timell TE (ed) Microbial and enzymatic degradation of wood and wood components. Berlin, Springer, pp 225–333

    Google Scholar 

  • Field JA, de Jong E, Feijoo Costa G, de Bont JAM (1992) Biodegradation of polycyclic aromatic hydrocarbons by new isolates of white-rot fungi. Appl Environ Microbiol 58:2219–2226

    CAS  Google Scholar 

  • Guengerich FP (2002) Cytochrome p450 enzymes in the generation of commercial products. Nature Rev Drug Discover 1:359–366

    Article  CAS  Google Scholar 

  • Gold MH, Wariishi H, Valli K (1989) Biocatalysis in agricultural biotechnology. ACS symposium series 389. American Chemical Society, Washington, pp 127–140

    Book  Google Scholar 

  • Haemmerli SD, Leisola MSA, Sanglard D, Fiechter A (1986) Oxidation of benzo (a) pyrene by extracellular lignases of Phanerochaete chrysosporium: veratryl alcohol and stability of lignases. J Biol Chem 261:6900–6903

    CAS  Google Scholar 

  • Hammel KE, Moen MA (1991) Depolymerisation of a synthetic lignin in vitro by lignin peroxidase. Enzyme Microb Technol 13:15–18

    Article  CAS  Google Scholar 

  • Hammel KE, Kalyanaraman B, Kirk TK (1986) Oxidation of polycyclic aromatic hydrocarbons and dibenzo[p]dioxins by Phanerochaete chrysosporium ligninase. J Biol Chem 261:16948–16952

    CAS  Google Scholar 

  • Ichinose H, Wariishi H, Tanaka H (1999) Biotransformation of recalcitrant 4-methyldibenzothiophene to water-extractable products using lignin-degrading basidiomycete Coriolus versicolor. Biotechnol Prog 15:706–714

    Article  CAS  Google Scholar 

  • Intikhab A, Hubbard SJ, Oliver SG, Rattray M (2007) A kingdom-specific protein domain HMM library for improved annotation of fungal genomes. BMC Genomics 8:97

    Article  Google Scholar 

  • Kamei I, Sonoki S, Haraguchi K, Kondo R (2006) Fungal bioconversion of toxic polychlorinated biphenyls by white rot fungus, Phlebia brevispora. Appl Microbiol Biotechnol 73:932–940

    Article  CAS  Google Scholar 

  • Kasai N, Ikushiro S, Shinji H, Arisawa A, Ichinose H, Wariishi H, Miho Ohta M, Sakaki T (2009) Enzymatic properties of cytochrome P450 catalyzing 3′-hydroxylation of naringen from the white rot fungus Phanerochaete chrysosporium. Biochem Biophys Res Commun 387:103–108

    Article  CAS  Google Scholar 

  • Kasai N, Ikushiro S, Shinkyo R, Yasuda K, Hirosue S, Arisawa A, Ichinose H, Wariishi H, Sakaki T (2010a) Metabolism of mono- and dichloro-dibenzo-p-dioxins by Phanerochaete chrysosporium cytochromes P450. Appl Microbiol Biotechnol 86:773–780

    Article  CAS  Google Scholar 

  • Kasai N, Ikushiro S, Hirosue S, Arisawa A, Ichinose H, Uchida Y, Wariishi H, Ohta M, Sakaki T (2010b) A typical kinetics of cytochrome P450 catalysing 3′-hydroxylation of flavone from the white-rot fungus Phanerochaete chrysosporium. J Biochem 147:117–125

    Article  CAS  Google Scholar 

  • Kirk TK, Farrell RL (1987) Enzymatic “combustion”: the microbial degradation of lignin. Annu Rev Microbiol 41:465–505

    Article  CAS  Google Scholar 

  • Kirk TK, Schultz E, Connors WJ, Lorenz LF, Zeikus JG (1978) Influence of culture parameters on lignin metabolism by Phanerochaete chrysosporium. Arch Microbiol 117:277–285

    Article  CAS  Google Scholar 

  • Kullman SW, Matsumura F (1996) Metabolic pathways utilized by Phanerochaete chrysosporium for degradation of the cyclodiene pesticide endosulfan. Appl Environ Microbiol 62:593–600

    CAS  Google Scholar 

  • Kullman SW, Matsumura F (1997) Identification of a novel cytochrome P450 gene from the white-rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 63:2741–2746

    CAS  Google Scholar 

  • Masaphy S, Levanon D, Henis Y, Venkateswarlu K, Kelly SL (1995) Microsomal and cytosolic cytochrome P450 mediated benzo(a)pyrene hydroxylation in Pleurotus pulmonarius. Biotechnol Lett 17:969–974

    Article  Google Scholar 

  • Ortiz de Montellano PR (2005) Cytochrome P450: structure, mechanism, and biochemistry, 3rd edn. Kluwer Academic/Plenum, New York

    Google Scholar 

  • Rodríguez E, Nuero O, Guillén F, Martínez AT, Martínez MJ (2004) Degradation of phenolic and non-phenolic aromatic pollutants by four Pleurotus species: the role of laccase and versatile peroxidase. Soil Biol Biochem 36:909–916

    Article  Google Scholar 

  • Park J, Park B, Jung K, Jang S, Yu K, Choi J, Kong S, Park J, Kim S, Kim H, Kim S, Kim JF, Blair JE, Lee K, Kang S, Lee YH (2008) CFGP: a web-based, comparative fungal genomics platform. Nucleic Acids Res 36:D562–D571

    Article  CAS  Google Scholar 

  • Sambrook J, Russel DW (2001) Extraction, purification, and anaysis of mRNA from eukaryotic cells. In: Argentine J (ed) Molecular cloning: a laboratory manual, 3 rd edn, vol 1. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Sarkanen KV, Ludwig CH (1971) Lignins: occurrence, formation, structure and reactions. Wiley, New York

    Google Scholar 

  • Schützendübel A, Majcherczyk A, Johannes C, Hüttermann A (1999) Degradation of fluorine, anthracene, phenanthrene, fluoranthene, and pyrene lacks connection to the production of extracellular enzymes by Pleurotus ostreatus and Bjerkandera adusta. Int Biodeterior Biodegrad 43:93–100

    Article  Google Scholar 

  • Sutherland JB, Selby AL, Freeman JP, Evans FE, Cerniglia CE (1991) Metabolism of phenanthrene by Phanerochaete chrysosporium. Appl Environ Microbiol 57:3310–3316

    CAS  Google Scholar 

  • Teramoto H, Tanaka H, Wariishi H (2004) Degradation of 4-nitrophenol by the lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl Microbiol Biotechnol 66:312–317

    Article  CAS  Google Scholar 

  • Van den Brink HJM, van Gorcom RFM, van den Hondel CAMJJ, Punt PJ (1998) Cytochrome P450 enzyme systems in fungi. Fungal Gen Biol 23:1–17

    Article  Google Scholar 

  • Van Hamme JD, Wong ET, Dettman H, Gray MR, Pickard MA (2003) Dibenzyl sulfide metabolism by white rot fungi. Appl Environ Microbiol 69:1320–1324

    Article  Google Scholar 

  • Wang C, Sun H, Li J, Li Y, Zhang Q (2009) Enzyme activities during degradation of polycyclic aromatic hydrocarbons by white rot fungus Phanerochaete chrysosporium in soils. Chemosphere 77:733–738

    Article  CAS  Google Scholar 

  • Wariishi H, Gold MH (1990) Lignin peroxidase compound III: mechanism of formation and decomposition. J Biol Chem 265:2070–2077

    CAS  Google Scholar 

  • Wariishi H, Valli K, Gold MH (1991) In vitro depolymerization of lignin by manganese peroxidase of Phanerochaete chrysosporium. Biochem Biophys Res Commun 176:269–275

    Article  CAS  Google Scholar 

  • Workman C, Jensen LJ, Jarmer H, Berka R, Gautier L, Nielser HB, Saxild HH, Nielsen C, Brunak S, Knudsen S (2002) A new non-linear normalization method for reducing variability in DNA microarray experiments. Genome Biol 3:research0048.1–0048.16

    Article  Google Scholar 

  • Yadav JS, Reddy CA (1992) Non-involvement of lignin peroxidases and manganese peroxidases in 2, 4, 5-trichlorophenoxy-acetic acid degradation by Phanerochaete chrysosporium. Biotechnol Lett 14:1089–1092

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This research was supported in part by a Grant-in-Aid (#21688013) for Young Scientists (A) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) (to H. I.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Wariishi.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

Table S1

Microarray expression profiling of PcCYP genes induced by anthrone (DOC 42 kb)

Figure S1

cDNA and deduced amino acid sequences of PcCYPs responsive for anthracene metabolism (DOC 86 kb)

Figure S2

Conversion of anthracene by purified LiP (JPG 4.36 KB)

High resolution image file (TIFF 3.5 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chigu, N.L., Hirosue, S., Nakamura, C. et al. Cytochrome P450 monooxygenases involved in anthracene metabolism by the white-rot basidiomycete Phanerochaete chrysosporium . Appl Microbiol Biotechnol 87, 1907–1916 (2010). https://doi.org/10.1007/s00253-010-2616-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2616-1

Keywords

Navigation