Skip to main content
Log in

Degradation of 4-nitrophenol by the lignin-degrading basidiomycete Phanerochaete chrysosporium

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The fungal metabolism of 4-nitrophenol (4-NP) was investigated using the lignin-degrading basidiomycete, Phanerochaete chrysosporium. Despite its phenolic feature, 4-NP was not oxidized by extracellular ligninolytic peroxidases. However, 4-NP was converted to 1,2-dimethoxy-4-nitrobenzene via intermediate formation of 4-nitroanisole by the fungus only under ligninolytic conditions. The metabolism proceeded via hydroxylation of the aromatic ring and methylation of phenolic hydroxyl groups. Although the involvement of nitroreductase in the metabolism of 2,4-dinitrotoluene by many aerobic and anaerobic microorganisms including P. chrysosporium has been reported, no formation of 4-aminophenol was observed during 4-NP metabolism. The formation of 1,2-dimethoxy-4-nitrobenzene was effectively inhibited by exogenously added piperonyl butoxide, a cytochrome P450 inhibitor, suggesting that cytochrome P450 is involved in the hydroxylation reaction. Thus, P. chrysosporium seems to utilize hydroxylation and methylation reactions to produce a more susceptible structure for an oxidative metabolic system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Esteve-Nunez A, Caballero A, Ramos J (2001) Biological degradation of 2,4,6-trinitrotoluene. Microbiol Mol Biol Rev 65:335–352

    Article  CAS  PubMed  Google Scholar 

  • Fernado T, Bumpus JA, Aust SD (1990) Biodegradation of TNT (2,4,6-trinitrotoluene) by Phanerochaete chrysosporium. Appl Environ Microbiol 56:1666–1671

    PubMed  Google Scholar 

  • Gold MH, Wariishi H, Valli K (1989) Biocatalysis in agricultural biotechnology. ACS symposium series 389. American Chemical Society, Washington, D.C., pp 127–140

  • Hallas LE, Alexander M (1983) Microbial transformation of nitroaromatic compounds in sewage effluent. Appl Environ Microbiol 45:1234–1241

    CAS  PubMed  Google Scholar 

  • Hirano T, Honda Y, Watanabe T, Kuwahara M (2000) Degradation of bisphenol A by the lignin-degrading enzyme, manganese peroxidase, produced by the white-rot basidiomycete, Pleurotus ostreatus. Biosci Biotechnol Biochem 64:1958–1962

    CAS  PubMed  Google Scholar 

  • Ichinose H, Wariishi H, Tanaka H (1999) Bioconversion of recalcitrant 4-methyldibenzothiophene to water-extractable products using lignin-degrading basidiomycete Coriolus versicolor. Biotechnol Prog 15:706–714

    Article  CAS  PubMed  Google Scholar 

  • Jain RK, Dreisbach JH, Spain JC (1994) Biodegradation of p-nitrophenol via 1,2,4-benzenetriol by an Arthrobacter sp. Appl Environ Microbiol 60:3030–3032

    CAS  PubMed  Google Scholar 

  • Johjima T, Itoh N, Kabuto M, Tokimura F, Nakagawa T, Wariishi H, Tanaka H (1999) Direct interaction of lignin and lignin peroxidase from Phanerochaete chrysosporium. Proc Natl Acad Sci USA 96:1989–1994

    Article  CAS  PubMed  Google Scholar 

  • Joshi DK, Gold MH (1993) Degradation of 2,4,5-trichlorophenol by the lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl Environ Microbiol 59:1779–1785

    CAS  PubMed  Google Scholar 

  • Kirk TK, Farrel RL (1987) Enzymatic ‘combustion’: the microbial degradation of lignin. Annu Rev Microbiol 41:465–505

    Article  CAS  PubMed  Google Scholar 

  • Kirk TK, Schultz E, Connors WJ, Lorenz LF, Zeikus JG (1978) Influence of culture parameters on lignin metabolism by Phanerochaete chrysosporium. Arch Microbiol 117:277–285

    CAS  Google Scholar 

  • Li C, Hoffman MZ (1999) One-electron redox potentials of phenols in aqueous solution. J Phys Chem B 103:6653–6656

    Article  CAS  Google Scholar 

  • Mileski GJ, Bumpus JA, Jurek MA, Aust SD (1988) Biodegradation of pentachlorophenol by the white-rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 54:2885–2889

    CAS  PubMed  Google Scholar 

  • Munir E, Yoon JJ, Tokimatsu T, Hattori T, Shimada M (2001) New role for glyoxylate cycle enzymes in wood-rotting basidiomycetes in relation to biosynthesis of oxalic acid. J Wood Sci 47:368–373

    CAS  Google Scholar 

  • Ohkura K, Hori H (1999) Analysis of structure-permeability correlation of nitrophenol analogues in newborn rat abdominal skin using semiempirical molecular orbital calculation. Bioorg Med Chem 7:309–314

    Article  CAS  PubMed  Google Scholar 

  • Rieble S, Joshi DK, Gold MH (1994) Aromatic nitroreductase from the basidiomycete Phanerochaete chrysosporium. Biochem Biophys Res Commun 205:298–304

    Article  CAS  PubMed  Google Scholar 

  • Reddy GVB, Gelpke MDS, Gold MH (1998) Degradation of 2,4,6-trichlorophenol by Phanerochaete chrysosporium: involvement of reductive dechlorination. J Bacteriol 180:5159–5164

    CAS  PubMed  Google Scholar 

  • Schackmann A, Muller R (1991) Reduction of nitroaromatic compounds by different Pseudomonas species under aerobic conditions. Appl Microbiol Biotechnol 34:809–813

    CAS  Google Scholar 

  • Spain JC, Gibson DT (1991) Pathway for biodegradation of p-nitrophenol in a Moraxella species. Appl Environ Microbiol 57:812–819

    CAS  Google Scholar 

  • Spain JC, Wyss O, Gibson DT (1979) Enzymatic oxidation of p-nitrophenol. Biochem Biophys Res Commun 88:634–641

    CAS  PubMed  Google Scholar 

  • Spain JC, Hughes JB, Knackmuss HJ (eds) (2000) Biodegradation of nitroaromatic compounds and explosives. Lewis, Boca Raton, pp 145–160

  • Stahl JD, Aust SD (1993) Plasma membrane dependent reduction of 2,4,6-trinitrotoluene by Phanerochaete chrysosporium. Biochem Biophys Res Commun 192:471–476

    Article  CAS  PubMed  Google Scholar 

  • Stahl JD, Aust SD (1995) Properties of transplasma membrane redox system of Phanerochaete chrysosporium. Arch Biochem Biophys 320:369–374

    Article  CAS  PubMed  Google Scholar 

  • Valli K, Gold MH (1991) Degradation of 2,4-dichlorophenol by the lignin-degrading fungus Phanerochaete chrysosporium. J Bacteriol 173:345–352

    CAS  PubMed  Google Scholar 

  • Valli K, Brock BJ, Joshi DK, Gold MH (1992) Degradation of 2,4-dinitrotoluene by the lignin-degrading fungus Phanerochaete chrysosporium. Appl Environ Microbiol 58:221–228

    CAS  PubMed  Google Scholar 

  • Wariishi H (2000) Fungal metabolism of environmentally persistent compounds: substrate recognition and metabolic response. Biotechnol Bioprocess Eng 5:422–430

    CAS  Google Scholar 

  • Wariishi H, Gold MH (1990) Lignin peroxidase compound III: mechanism of formation and decomposition. J Biol Chem 265:2070–2077

    CAS  PubMed  Google Scholar 

  • Wariishi H, Morohoshi N, Haraguchi T (1987) Degradation of lignin by laccase isolated from Coriolus versicolor. Mokuzai Gakkaishi 11:892–898

    Google Scholar 

Download references

Acknowledgement

This research was supported by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (to H.W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Wariishi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teramoto, H., Tanaka, H. & Wariishi, H. Degradation of 4-nitrophenol by the lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl Microbiol Biotechnol 66, 312–317 (2004). https://doi.org/10.1007/s00253-004-1637-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-004-1637-z

Keywords

Navigation