Skip to main content

Advertisement

Log in

Evolution of innate-like T cells and their selection by MHC class I-like molecules

  • Review
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

Until recently, major histocompatibility complex (MHC) class I-like-restricted innate-like αβT (iT) cells expressing an invariant or semi-invariant T cell receptor (TCR) repertoire were thought to be a recent evolutionary acquisition restricted to mammals. However, molecular and functional studies in Xenopus laevis have demonstrated that iT cells, defined as MHC class I-like-restricted innate-like αβT cells with a semi-invariant TCR, are evolutionarily conserved and prominent from early development in amphibians. As these iT cells lack the specificity conferred by conventional αβ TCRs, it is generally considered that they are specialized to recognize conserved antigens equivalent to pathogen-associated molecular patterns. Thus, one advantage offered by the MHC class I-like iT cell-based recognition system is that it can be adapted to a common pathogen and function on the basis of a relatively small number of T cells. Although iT cells have only been functionally described in mammals and amphibians, the identification of non-classical MHC/MHC class I-like genes in other groups of endothermic and ectothermic vertebrates suggests that iT cells have a broader phylogenetic distribution than previously envisioned. In this review, we discuss the possible role of iT cells during the emergence of the jawed vertebrate adaptive immune system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams EJ, Luoma AM (2013) The adaptable major histocompatibility complex (MHC) fold: structure and function of nonclassical and MHC class I-like molecules. Annu Rev Immunol 31:529–561

    Article  CAS  PubMed  Google Scholar 

  • Adams EJ, Parham P (2001) Species-specific evolution of MHC class I genes in the higher primates. Immunol Rev 183:41–64

    Article  CAS  PubMed  Google Scholar 

  • Barlow EH, Cohen N (1983) The thymus dependency of transplantation allotolerance in the metamorphosing frog Xenopus laevis. Transplantation 35:612–619

    Article  CAS  PubMed  Google Scholar 

  • Bartl S, Baish MA, Flajnik MF, Ohta Y (1997) Identification of class I genes in cartilaginous fish, the most ancient group of vertebrates displaying an adaptive immune response. J Immunol 159:6097–6104

    CAS  PubMed  Google Scholar 

  • Bendelac A (1995) Positive selection of mouse NK1+ T cells by CD1-expressing cortical thymocytes. J Exp Med 182:2091–2096

    Article  CAS  PubMed  Google Scholar 

  • Bendelac A, Lantz O, Quimby ME, Yewdell JW, Bennink JR, Brutkiewicz RR (1995) CD1 recognition by mouse NK1+ T lymphocytes. Science 268:863–865

    Article  CAS  PubMed  Google Scholar 

  • Bluestone JA, Jameson S, Miller S, Dick R 2nd (1992) Peptide-induced conformational changes in class I heavy chains alter major histocompatibility complex recognition. J Exp Med 176:1757–1761

    Article  CAS  PubMed  Google Scholar 

  • Boehm T, McCurley N, Sutoh Y, Schorpp M, Kasahara M, Cooper MD (2012) VLR-based adaptive immunity. Annu Rev Immunol 30:203–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boehm T, Swann JB (2014) Origin and evolution of adaptive immunity. Annu Rev Anim Biosci 2:259–283

    Article  CAS  PubMed  Google Scholar 

  • Cooper MD, Alder MN (2006) The evolution of adaptive immune systems. Cell 124:815–822

    Article  CAS  PubMed  Google Scholar 

  • Corbett AJ, Eckle SB, Birkinshaw RW, Liu L, Patel O, Mahony J, Chen Z, Reantragoon R, Meehan B, Cao H, Williamson NA, Strugnell RA, Van Sinderen D, Mak JY, Fairlie DP, Kjer-Nielsen L, Rossjohn J, McCluskey J (2014) T-cell activation by transitory neo-antigens derived from distinct microbial pathways. Nature 509:361–365

    Article  CAS  PubMed  Google Scholar 

  • Chandra S, Kronenberg M (2015) Activation and function of iNKT and MAIT cells. Adv Immunol 127:145–201

    Article  PubMed  Google Scholar 

  • Chien YH, Jores R, Crowley MP (1996) Recognition by gamma/delta T cells. Annu Rev Immunol 14:511–532

    Article  CAS  PubMed  Google Scholar 

  • Dascher CC (2007) Evolutionary biology of CD1. Curr Top Microbiol Immunol 314:3–26

    CAS  PubMed  Google Scholar 

  • Dijkstra JM, Kiryu I, Yoshiura Y, Kumanovics A, Kohara M, Hayashi N, Ototake M (2006) Polymorphism of two very similar MHC class Ib loci in rainbow trout (Oncorhynchus mykiss). Immunogenetics 58:152–167

    Article  CAS  PubMed  Google Scholar 

  • Du Pasquier L (1992) Origin and evolution of the vertebrate immune system. APMIS 100:383–392

    Article  CAS  PubMed  Google Scholar 

  • Du Pasquier L, Weiss N (1973) The thymus during the ontogeny of the toad Xenopus laevis: growth, membrane-bound immunoglobulins and mixed lymphocyte reaction. Eur J Immunol 3:773–777

    Article  PubMed  Google Scholar 

  • Edholm ES, Albertorio Saez LM, Gill AL, Gill SR, Grayfer L, Haynes N, Myers JR, Robert J (2013) Nonclassical MHC class I-dependent invariant T cells are evolutionarily conserved and prominent from early development in amphibians. Proc Natl Acad Sci U S A 110:14342–14347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edholm ES, Goyos A, Taran J, De Jesus AF, Ohta Y, Robert J (2014a) Unusual evolutionary conservation and further species-specific adaptations of a large family of nonclassical MHC class Ib genes across different degrees of genome ploidy in the amphibian subfamily Xenopodinae. Immunogenetics 66:411–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edholm ES, Grayfer L, De Jesus AF, Robert J (2015) Nonclassical MHC-restricted invariant Valpha6 T cells are critical for efficient early innate antiviral immunity in the amphibian Xenopus laevis. J Immunol 195:576–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edholm ES, Grayfer L, Robert J (2014b) Evolution of nonclassical MHC-dependent invariant T cells. Cell Mol Life Sci 71:4763–4780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans BJ (2008) Genome evolution and speciation genetics of clawed frogs (Xenopus and Silurana). Front Biosci 13:4687–4706

    Article  CAS  PubMed  Google Scholar 

  • Evans BJ, Carter TF, Greenbaum E, Gvozdik V, Kelley DB, McLaughlin PJ, Pauwels OS, Portik DM, Stanley EL, Tinsley RC, Tobias ML, Blackburn DC (2015) Genetics, morphology, advertisement calls, and historical records distinguish six new polyploid species of African clawed frog (Xenopus, Pipidae) from west and Central Africa. PLoS One 10:e0142823

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferreira LM (2013) Gammadelta T cells: innately adaptive immune cells? Int Rev Immunol 32:223–248

    Article  CAS  PubMed  Google Scholar 

  • Flajnik MF, Kasahara M (2001) Comparative genomics of the MHC: glimpses into the evolution of the adaptive immune system. Immunity 15:351–362

    Article  CAS  PubMed  Google Scholar 

  • Flajnik MF, Kasahara M (2010) Origin and evolution of the adaptive immune system: genetic events and selective pressures. Nat Rev Genet 11:47–59

    Article  CAS  PubMed  Google Scholar 

  • Flajnik MF, Kasahara M, Shum BP, Salter-Cid L, Taylor E, Du Pasquier L (1993) A novel type of class I gene organization in vertebrates: a large family of non-MHC-linked class I genes is expressed at the RNA level in the amphibian Xenopus. EMBO J 12:4385–4396

    CAS  PubMed  PubMed Central  Google Scholar 

  • Flajnik MF, Kaufman JF, Hsu E, Manes M, Parisot R, Du Pasquier L (1986) Major histocompatibility complex-encoded class I molecules are absent in immunologically competent Xenopus before metamorphosis. J Immunol 137:3891–3899

    CAS  PubMed  Google Scholar 

  • Fugmann SD, Messier C, Novack LA, Cameron RA, Rast JP (2006) An ancient evolutionary origin of the Rag1/2 gene locus. Proc Natl Acad Sci U S A 103:3728–3733

    Article  CAS  PubMed Central  Google Scholar 

  • Gapin L, Matsuda JL, Surh CD, Kronenberg M (2001) NKT cells derive from double-positive thymocytes that are positively selected by CD1d. Nat Immunol 2:971–978

    Article  CAS  PubMed  Google Scholar 

  • Godfrey DI, Uldrich AP, McCluskey J, Rossjohn J, Moody DB (2015) The burgeoning family of unconventional T cells. Nat Immunol 16:1114–1123

    Article  CAS  PubMed  Google Scholar 

  • Goyos A, Sowa J, Ohta Y, Robert J (2011) Remarkable conservation of distinct nonclassical MHC class I lineages in divergent amphibian species. J Immunol 186:372–381

    Article  CAS  PubMed  Google Scholar 

  • Grimholt U (2016) MHC and evolution in teleosts. Biol (Basel) 5

  • Grimholt U, Tsukamoto K, Azuma T, Leong J, Koop BF, Dijkstra JM (2015) A comprehensive analysis of teleost MHC class I sequences. BMC Evol Biol 15:32

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanington PC, Forys MA, Dragoo JW, Zhang SM, Adema CM, Loker ES (2010) Role for a somatically diversified lectin in resistance of an invertebrate to parasite infection. Proc Natl Acad Sci U S A 107:21087–21092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen JD, Zapata AG (1998) Lymphocyte development in fish and amphibians. Immunol Rev 166:199–220

    Article  CAS  PubMed  Google Scholar 

  • Harrison MM, Jenkins BV, O’Connor-Giles KM, Wildonger J (2014) A CRISPR view of development. Genes Dev 28:1859–1872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haynes-Gilmore N, Banach M, Edholm ES, Lord E, Robert J (2014) A critical role of non-classical MHC in tumor immune evasion in the amphibian Xenopus model. Carcinogenesis 35:1807–1813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hee CS, Gao S, Loll B, Miller MM, Uchanska-Ziegler B, Daumke O, Ziegler A (2010) Structure of a classical MHC class I molecule that binds “non-classical” ligands. PLoS Biol 8:e1000557

    Article  PubMed  PubMed Central  Google Scholar 

  • Holland LZ, Albalat R, Azumi K, Benito-Gutierrez E, Blow MJ, Bronner-Fraser M, Brunet F, Butts T, Candiani S, Dishaw LJ, Ferrier DE, Garcia-Fernandez J, Gibson-Brown JJ, Gissi C, Godzik A, Hallbook F, Hirose D, Hosomichi K, Ikuta T, Inoko H, Kasahara M, Kasamatsu J, Kawashima T, Kimura A, Kobayashi M, Kozmik Z, Kubokawa K, Laudet V, Litman GW, McHardy AC, Meulemans D, Nonaka M, Olinski RP, Pancer Z, Pennacchio LA, Pestarino M, Rast JP, Rigoutsos I, Robinson-Rechavi M, Roch G, Saiga H, Sasakura Y, Satake M, Satou Y, Schubert M, Sherwood N, Shiina T, Takatori N, Tello J, Vopalensky P, Wada S, Xu A, Ye Y, Yoshida K, Yoshizaki F, Yu JK, Zhang Q, Zmasek CM, de Jong PJ, Osoegawa K, Putnam NH, Rokhsar DS, Satoh N, Holland PW (2008) The amphioxus genome illuminates vertebrate origins and cephalochordate biology. Genome Res 18:1100–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang S, Martin E, Kim S, Yu L, Soudais C, Fremont DH, Lantz O, Hansen TH (2009) MR1 antigen presentation to mucosal-associated invariant T cells was highly conserved in evolution. Proc Natl Acad Sci U S A 106:8290–8295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jorgensen JL, Esser U, Fazekas de St Groth B, Reay PA, Davis MM (1992) Mapping T-cell receptor-peptide contacts by variant peptide immunization of single-chain transgenics. Nature 355:224–230

    Article  CAS  PubMed  Google Scholar 

  • Kinjo Y, Illarionov P, Vela JL, Pei B, Girardi E, Li X, Li Y, Imamura M, Kaneko Y, Okawara A, Miyazaki Y, Gomez-Velasco A, Rogers P, Dahesh S, Uchiyama S, Khurana A, Kawahara K, Yesilkaya H, Andrew PW, Wong CH, Kawakami K, Nizet V, Besra GS, Tsuji M, Zajonc DM, Kronenberg M (2011) Invariant natural killer T cells recognize glycolipids from pathogenic Gram-positive bacteria. Nat Immunol 12:966–974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinjo Y, Tupin E, Wu D, Fujio M, Garcia-Navarro R, Benhnia MR, Zajonc DM, Ben-Menachem G, Ainge GD, Painter GF, Khurana A, Hoebe K, Behar SM, Beutler B, Wilson IA, Tsuji M, Sellati TJ, Wong CH, Kronenberg M (2006) Natural killer T cells recognize diacylglycerol antigens from pathogenic bacteria. Nat Immunol 7:978–986

    Article  CAS  PubMed  Google Scholar 

  • Kjer-Nielsen L, Patel O, Corbett AJ, Le Nours J, Meehan B, Liu L, Bhati M, Chen Z, Kostenko L, Reantragoon R, Williamson NA, Purcell AW, Dudek NL, McConville MJ, O’Hair RA, Khairallah GN, Godfrey DI, Fairlie DP, Rossjohn J, McCluskey J (2012) MR1 presents microbial vitamin B metabolites to MAIT cells. Nature 491:717–723

    CAS  PubMed  Google Scholar 

  • Lanier LL (2013) Shades of grey—the blurring view of innate and adaptive immunity. Nat Rev Immunol 13:73–74

    Article  CAS  PubMed  Google Scholar 

  • Litman GW, Anderson MK, Rast JP (1999) Evolution of antigen binding receptors. Annu Rev Immunol 17:109–147

    Article  CAS  PubMed  Google Scholar 

  • Litman GW, Rast JP, Fugmann SD (2010) The origins of vertebrate adaptive immunity. Nat Rev Immunol 10:543–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lukacs MF, Harstad H, Bakke HG, Beetz-Sargent M, McKinnel L, Lubieniecki KP, Koop BF, Grimholt U (2010) Comprehensive analysis of MHC class I genes from the U-, S-, and Z-lineages in Atlantic salmon. BMC Genomics 11:154

    Article  PubMed  PubMed Central  Google Scholar 

  • Marchalonis JJ, Schluter SF, Bernstein RM, Hohman VS (1998) Antibodies of sharks: revolution and evolution. Immunol Rev 166:103–122

    Article  CAS  PubMed  Google Scholar 

  • Miller KM, Li S, Ming TJ, Kaukinen KH, Schulze AD (2006) The salmonid MHC class I: more ancient loci uncovered. Immunogenetics 58:571–589

    Article  CAS  PubMed  Google Scholar 

  • Miller MM, Wang C, Parisini E, Coletta RD, Goto RM, Lee SY, Barral DC, Townes M, Roura-Mir C, Ford HL, Brenner MB, Dascher CC (2005) Characterization of two avian MHC-like genes reveals an ancient origin of the CD1 family. Proc Natl Acad Sci U S A 102:8674–8679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murugan A, Mora T, Walczak AM, Callan CG Jr (2012) Statistical inference of the generation probability of T-cell receptors from sequence repertoires. Proc Natl Acad Sci U S A 109:16161–16166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nei M, Gu X, Sitnikova T (1997) Evolution by the birth-and-death process in multigene families of the vertebrate immune system. Proc Natl Acad Sci U S A 94:7799–7806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nei M, Rooney AP (2005) Concerted and birth-and-death evolution of multigene families. Annu Rev Genet 39:121–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Brien RL, Happ MP, Dallas A, Palmer E, Kubo R, Born WK (1989) Stimulation of a major subset of lymphocytes expressing T cell receptor gamma delta by an antigen derived from Mycobacterium tuberculosis. Cell 57:667–674

    Article  PubMed  Google Scholar 

  • Pancer Z, Amemiya CT, Ehrhardt GR, Ceitlin J, Gartland GL, Cooper MD (2004) Somatic diversification of variable lymphocyte receptors in the agnathan sea lamprey. Nature 430:174–180

    Article  CAS  PubMed  Google Scholar 

  • Parra ZE, Baker ML, Lopez AM, Trujillo J, Volpe JM, Miller RD (2009) TCR mu recombination and transcription relative to the conventional TCR during postnatal development in opossums. J Immunol 182:154–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parra ZE, Baker ML, Schwarz RS, Deakin JE, Lindblad-Toh K, Miller RD (2007) A unique T cell receptor discovered in marsupials. Proc Natl Acad Sci U S A 104:9776–9781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parra ZE, Ohta Y, Criscitiello MF, Flajnik MF, Miller RD (2010) The dynamic TCRdelta: TCRdelta chains in the amphibian Xenopus tropicalis utilize antibody-like V genes. Eur J Immunol 40:2319–2329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piontkivska H, Nei M (2003) Birth-and-death evolution in primate MHC class I genes: divergence time estimates. Mol Biol Evol 20:601–609

    Article  CAS  PubMed  Google Scholar 

  • Porcelli S, Yockey CE, Brenner MB, Balk SP (1993) Analysis of T cell antigen receptor (TCR) expression by human peripheral blood CD4-8- alpha/beta T cells demonstrates preferential use of several V beta genes and an invariant TCR alpha chain. J Exp Med 178:1–16

    Article  CAS  PubMed  Google Scholar 

  • Rast JP, Anderson MK, Strong SJ, Luer C, Litman RT, Litman GW (1997) Alpha, beta, gamma, and delta T cell antigen receptor genes arose early in vertebrate phylogeny. Immunity 6:1–11

    Article  CAS  PubMed  Google Scholar 

  • Robert J, Ohta Y (2009) Comparative and developmental study of the immune system in Xenopus. Dev Dyn 238:1249–1270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robins HS, Srivastava SK, Campregher PV, Turtle CJ, Andriesen J, Riddell SR, Carlson CS, Warren EH (2010) Overlap and effective size of the human CD8+ T cell receptor repertoire. Sci Transl Med 2:47ra64

    Article  PubMed  PubMed Central  Google Scholar 

  • Rollins-Smith LA, Parsons SC, Cohen N (1984) During frog ontogeny, PHA and Con A responsiveness of splenocytes precedes that of thymocytes. Immunology 52(3):491–500. PMID: 6611296

  • Rollins-Smith LA, Flajnik MF, Blair PJ, Davis AT, Green WF (1997) Involvement of thyroid hormones in the expression of MHC class I antigens during ontogeny in Xenopus. Dev Immunol 5:133–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakano H, Huppi K, Heinrich G, Tonegawa S (1979) Sequences at the somatic recombination sites of immunoglobulin light-chain genes. Nature 280:288–294

    Article  CAS  PubMed  Google Scholar 

  • Salio M, Silk JD, Jones EY, Cerundolo V (2014) Biology of CD1- and MR1-restricted T cells. Annu Rev Immunol 32:323–366

    Article  CAS  PubMed  Google Scholar 

  • Salomonsen J, Sorensen MR, Marston DA, Rogers SL, Collen T, van Hateren A, Smith AL, Beal RK, Skjodt K, Kaufman J (2005) Two CD1 genes map to the chicken MHC, indicating that CD1 genes are ancient and likely to have been present in the primordial MHC. Proc Natl Acad Sci U S A 102:8668–8673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salter-Cid L, Nonaka M, Flajnik MF (1998) Expression of MHC class Ia and class Ib during ontogeny: high expression in epithelia and coregulation of class Ia and lmp7 genes. J Immunol 160:2853–2861

    CAS  PubMed  Google Scholar 

  • Sammut B, Laurens V, Tournefier A (1997) Isolation of Mhc class I cDNAs from the axolotl Ambystoma mexicanum. Immunogenetics 45:285–294

    Article  CAS  PubMed  Google Scholar 

  • Scott-Browne JP, Crawford F, Young MH, Kappler JW, Marrack P, Gapin L (2011) Evolutionarily conserved features contribute to alphabeta T cell receptor specificity. Immunity 35:526–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schild H, Chien YH (1994) The recognition of MHC molecules by gamma delta T cells. Behring Inst Mitt:113–123

  • Schild H, Mavaddat N, Litzenberger C, Ehrich EW, Davis MM, Bluestone JA, Matis L, Draper RK, Chien YH (1994) The nature of major histocompatibility complex recognition by gamma delta T cells. Cell 76:29–37

    Article  CAS  PubMed  Google Scholar 

  • Star B, Nederbragt AJ, Jentoft S, Grimholt U, Malmstrom M, Gregers TF, Rounge TB, Paulsen J, Solbakken MH, Sharma A, Wetten OF, Lanzen A, Winer R, Knight J, Vogel JH, Aken B, Andersen O, Lagesen K, Tooming-Klunderud A, Edvardsen RB, Tina KG, Espelund M, Nepal C, Previti C, Karlsen BO, Moum T, Skage M, Berg PR, Gjoen T, Kuhl H, Thorsen J, Malde K, Reinhardt R, Du L, Johansen SD, Searle S, Lien S, Nilsen F, Jonassen I, Omholt SW, Stenseth NC, Jakobsen KS (2011) The genome sequence of Atlantic cod reveals a unique immune system. Nature 477:207–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson CB (1995) New insights into V(D)J recombination and its role in the evolution of the immune system. Immunity 3:531–539

    Article  CAS  PubMed  Google Scholar 

  • Tilloy F, Treiner E, Park SH, Garcia C, Lemonnier F, de la Salle H, Bendelac A, Bonneville M, Lantz O (1999) An invariant T cell receptor alpha chain defines a novel TAP-independent major histocompatibility complex class Ib-restricted alpha/beta T cell subpopulation in mammals. J Exp Med 189:1907–1921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tonegawa S (1983) Somatic generation of antibody diversity. Nature 302:575–581

    Article  CAS  PubMed  Google Scholar 

  • Treiner E, Duban L, Bahram S, Radosavljevic M, Wanner V, Tilloy F, Affaticati P, Gilfillan S, Lantz O (2003) Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1. Nature 422:164–169

    Article  CAS  PubMed  Google Scholar 

  • Turpen JB, Smith PB (1989) Precursor immigration and thymocyte succession during larval development and metamorphosis in Xenopus. J Immunol 142:41–47

    CAS  PubMed  Google Scholar 

  • Wang C, Perera TV, Ford HL, Dascher CC (2003) Characterization of a divergent non-classical MHC class I gene in sharks. Immunogenetics 55:57–61

    Article  CAS  PubMed  Google Scholar 

  • Watson FL, Puttmann-Holgado R, Thomas F, Lamar DL, Hughes M, Kondo M, Rebel VI, Schmucker D (2005) Extensive diversity of Ig-superfamily proteins in the immune system of insects. Science 309:1874–1878

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Wang C, Wang T, Bai J, Zhao Y, Liu X, Ma Q, Wu X, Guo Y, Zhao Y, Ren L (2015) Analysis of the reptile CD1 genes: evolutionary implications. Immunogenetics 67:337–346

    Article  CAS  PubMed  Google Scholar 

  • Zhang SM, Adema CM, Kepler TB, Loker ES (2004) Diversification of Ig superfamily genes in an invertebrate. Science 305:251–254

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Edith Lord for critical reading of the manuscript. This work was supported by an R24-AI-059830 grant from the National Institute of Allergy and Infectious Diseases (NIH/NIAID). M.B. was supported by a predoctoral fellowship Ruth L. Kirschstein Predoctoral F31 (F31CA192664) from the National Cancer Institute (NIH/NCI). E-S.E. was supported by the National Science Foundation IOS-1456213 and a 2015 Career in Immunology Fellowship from the American Association of Immunologists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques Robert.

Additional information

This article is published in the Special Issue CD1, MR1, NKT, and MAIT: Evolution and Origins of Non-peptidic Antigen Recognition by T lymphocytes with Guest Editor Dr. Dirk Zajonc

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edholm, ES., Banach, M. & Robert, J. Evolution of innate-like T cells and their selection by MHC class I-like molecules. Immunogenetics 68, 525–536 (2016). https://doi.org/10.1007/s00251-016-0929-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-016-0929-7

Keywords

Navigation