Skip to main content
Log in

Analysis of the reptile CD1 genes: evolutionary implications

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

CD1, as the third family of antigen-presenting molecules, is previously only found in mammals and chickens, which suggests that the chicken and mammalian CD1 shared a common ancestral gene emerging at least 310 million years ago. Here, we describe CD1 genes in the green anole lizard and Crocodylia, demonstrating that CD1 is ubiquitous in mammals, birds, and reptiles. Although the reptilian CD1 protein structures are predicted to be similar to human CD1d and chicken CD1.1, CD1 isotypes are not found to be orthologous between mammals, birds, and reptiles according to phylogenetic analyses, suggesting an independent diversification of CD1 isotypes during the speciation of mammals, birds, and reptiles. In the green anole lizard, although the single CD1 locus and MHC I gene are located on the same chromosome, there is an approximately 10-Mb-long sequence in between, and interestingly, several genes flanking the CD1 locus belong to the MHC paralogous region on human chromosome 19. The CD1 genes in Crocodylia are located in two loci, respectively linked to the MHC region and MHC paralogous region (corresponding to the MHC paralogous region on chromosome 19). These results provide new insights for studying the origin and evolution of CD1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adams EJ, Luoma AM (2013) The adaptable major histocompatibility complex (MHC) fold: structure and function of nonclassical and MHC class I-like molecules. Annu Rev Immunol 31:529–561. doi:10.1146/annurev-immunol-032712-095912

    Article  CAS  PubMed  Google Scholar 

  • Albertson DG, Fishpool R, Sherrington P, Nacheva E, Milstein C (1988) Sensitive and high resolution in situ hybridization to human chromosomes using biotin labelled probes: assignment of the human thymocyte CD1 antigen genes to chromosome 1. EMBO J 7:2801–2805

    PubMed Central  CAS  PubMed  Google Scholar 

  • Balk SP, Ebert EC, Blumenthal RL, McDermott FV, Wucherpfennig KW, Landau SB, Blumberg RS (1991) Oligoclonal expansion and CD1 recognition by human intestinal intraepithelial lymphocytes. Science 253:1411–1415

    Article  CAS  PubMed  Google Scholar 

  • Blumberg RS, Gerdes D, Chott A, Porcelli SA, Balk SP (1995) Structure and function of the CD1 family of MHC-like cell surface proteins. Immunol Rev 147:5–29

    Article  CAS  PubMed  Google Scholar 

  • Brigl M, Brenner MB (2004) CD1: antigen presentation and T cell function. Annu Rev Immunol 22:817–890. doi:10.1146/annurev.immunol.22.012703.104608

    Article  CAS  PubMed  Google Scholar 

  • Calabi F, Milstein C (1986) A novel family of human major histocompatibility complex-related genes not mapping to chromosome 6. Nature 323:540–543. doi:10.1038/323540a0

    Article  CAS  PubMed  Google Scholar 

  • Castano AR (1995) Peptide binding and presentation by mouse CD1. Science 269:223–226

    Article  CAS  PubMed  Google Scholar 

  • Dascher CC (2007) Evolutionary biology of CD1. Curr Top Microbiol Immunol 314:3–26

    CAS  PubMed  Google Scholar 

  • Dascher CC, Brenner MB (2003) Evolutionary constraints on CD1 structure: insights from comparative genomic analysis. Trends Immunol 24:412–418

    Article  CAS  PubMed  Google Scholar 

  • Dougan SK, Kaser A, Blumberg RS (2007) CD1 expression on antigen-presenting cells. Curr Top Microbiol Immunol 314:113–141

    CAS  PubMed  Google Scholar 

  • Hein J (1990) [39] Unified approach to alignment and phylogenies. In: Methods in Enzymology, vol Volume 183. Academic Press, pp 626–645. doi:http://dx.doi.org/10.1016/0076-6879(90)83041-7

  • Hokamp K, McLysaght A, Wolfe KH (2003) The 2R hypothesis and the human genome sequence. J Struct Funct Genom 3:95–110

    Article  CAS  Google Scholar 

  • Holland PW, Garcia-Fernandez J, Williams NA, Sidow A (1994) Gene duplications and the origins of vertebrate development Development (Cambridge, England) Supplement:125–133

  • Jayawardena-Wolf J, Bendelac A (2001) CD1 and lipid antigens: intracellular pathways for antigen presentation. Curr Opin Immunol 13:109–113

    Article  CAS  PubMed  Google Scholar 

  • Kasahara M (1999) The chromosomal duplication model of the major histocompatibility complex. Immunol Rev 167:17–32

    Article  CAS  PubMed  Google Scholar 

  • Klein J et al (1990) Nomenclature for the major histocompatibility complexes of different species: a proposal. Immunogenetics 31:217–219

    CAS  PubMed  Google Scholar 

  • Koch M et al (2005) The crystal structure of human CD1d with and without alpha-galactosylceramide. Nat Immunol 6:819–826

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Hedges SB (1998) A molecular timescale for vertebrate evolution. Nature 392:917–920. doi:10.1038/31927

    Article  CAS  PubMed  Google Scholar 

  • Martin LH, Calabi F, Milstein C (1986) Isolation of CD1 genes: a family of major histocompatibility complex-related differentiation antigens. Proc Natl Acad Sci U S A 83:9154–9158

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maruoka T, Tanabe H, Chiba M, Kasahara M (2005) Chicken CD1 genes are located in the MHC: CD1 and endothelial protein C receptor genes constitute a distinct subfamily of class-I-like genes that predates the emergence of mammals. Immunogenetics 57:590–600. doi:10.1007/s00251-005-0016-y

    Article  CAS  PubMed  Google Scholar 

  • Matsuda JL, Kronenberg M (2001) Presentation of self and microbial lipids by CD1 molecules. Curr Opin Immunol 13:19–25

    Article  CAS  PubMed  Google Scholar 

  • McMichael AJ, Pilch JR, Galfre G, Mason DY, Fabre JW, Milstein C (1979) A human thymocyte antigen defined by a hybrid myeloma monoclonal antibody. Eur J Immunol 9:205–210

    Article  CAS  PubMed  Google Scholar 

  • Miller MM et al (2005) Characterization of two avian MHC-like genes reveals an ancient origin of the CD1 family. Proc Natl Acad Sci U S A 102:8674–8679. doi:10.1073/pnas.0500105102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Moody DB et al (2004) T cell activation by lipopeptide antigens. Science 303:527–531. doi:10.1126/science.1089353

    Article  CAS  PubMed  Google Scholar 

  • Ohno S (1970) Evolution by gene duplication. George Alien & Unwin Ltd. Berlin, Heidelberg and New York: Springer-Verlag, London

    Book  Google Scholar 

  • Page RD (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Applic Biosci : CABIOS 12:357–358

    CAS  Google Scholar 

  • Porcelli SA (1995) The CD1 family: a third lineage of antigen-presenting molecules. Adv Immunol 59:1–98

    Article  CAS  PubMed  Google Scholar 

  • Porcelli SA, Modlin RL (1999) The CD1 system: antigen-presenting molecules for T cell recognition of lipids and glycolipids. Annu Rev Immunol 17:297–329. doi:10.1146/annurev.immunol.17.1.297

    Article  CAS  PubMed  Google Scholar 

  • Porcelli S, Brenner MB, Greenstein JL, Balk SP, Terhorst C, Bleicher PA (1989) Recognition of cluster of differentiation 1 antigens by human CD4-CD8-cytolytic T lymphocytes. Nature 341:447–450

    Article  CAS  PubMed  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  PubMed  Google Scholar 

  • Salomonsen J et al (2005) Two CD1 genes map to the chicken MHC, indicating that CD1 genes are ancient and likely to have been present in the primordial MHC. Proc Natl Acad Sci U S A 102:8668–8673. doi:10.1073/pnas.0409213102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sandoval IV, Bakke O (1994) Targeting of membrane proteins to endosomes and lysosomes. Trends Cell Biol 4:292–297

    Article  CAS  PubMed  Google Scholar 

  • Sugita M et al (1996) Cytoplasmic tail-dependent localization of CD1b antigen-presenting molecules to MIICs. Science 273:349–352

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wan QH et al (2013) Genome analysis and signature discovery for diving and sensory properties of the endangered Chinese alligator. Cell Res 23:1091–1105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zajonc DM, Striegl H, Dascher CC, Wilson IA (2008) The crystal structure of avian CD1 reveals a smaller, more primordial antigen-binding pocket compared to mammalian CD1. Proc Natl Acad Sci U S A 105:17925–17930

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (31272433).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liming Ren.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1802 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Wang, C., Wang, T. et al. Analysis of the reptile CD1 genes: evolutionary implications. Immunogenetics 67, 337–346 (2015). https://doi.org/10.1007/s00251-015-0837-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-015-0837-2

Keywords

Navigation