Skip to main content

Advertisement

Log in

Evolution of nonclassical MHC-dependent invariant T cells

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

TCR-mediated specific recognition of antigenic peptides in the context of classical MHC molecules is a cornerstone of adaptive immunity of jawed vertebrate. Ancillary to these interactions, the T cell repertoire also includes unconventional T cells that recognize endogenous and/or exogenous antigens in a classical MHC-unrestricted manner. Among these, the mammalian nonclassical MHC class I-restricted invariant T cell (iT) subsets, such as iNKT and MAIT cells, are now believed to be integral to immune response initiation as well as in orchestrating subsequent adaptive immunity. Until recently the evolutionary origins of these cells were unknown. Here we review our current understanding of a nonclassical MHC class I-restricted iT cell population in the amphibian Xenopus laevis. Parallels with the mammalian iNKT and MAIT cells underline the crucial biological roles of these evolutionarily ancient immune subsets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

MHC:

Major histocompatibility complex

XNC:

Xenopus non-classical

SNC:

Siluriana non-classical

MR1:

Major histocompatibility molecule related 1

TCR:

T cell receptor

MAIT:

MR1 associated invariant T cells

iNKT:

Invariant natural killer T cells

iT cells:

Invariant T cells

FV3:

Frog virus 3

MYA:

Million years ago

CTL:

Cytotoxic T lymphocytes

CCU-CTL:

Classical class Ia-unrestricted CTLs

NKT:

Natural killer T cells

αGalCer:

Glycolipid α-galactoceramide

DP:

Double positive

DN:

Double negative

SLAM:

Signaling lymphocytic activation molecules

CTX:

Cortical thymocyte-specific Xenopus

References

  1. Adams EJ, Luoma AM (2013) The adaptable major histocompatibility complex (MHC) fold: structure and function of nonclassical and MHC class I-like molecules. Annu Rev Immunol 31:529–561. doi:10.1146/annurev-immunol-032712-095912

    CAS  PubMed  Google Scholar 

  2. Rodgers JR, Cook RG (2005) MHC class Ib molecules bridge innate and acquired immunity. Nat Rev Immunol 5(6):459–471. doi:10.1038/nri1635

    CAS  PubMed  Google Scholar 

  3. Hansen TH, Huang S, Arnold PL, Fremont DH (2007) Patterns of nonclassical MHC antigen presentation. Nat Immunol 8(6):563–568. doi:10.1038/ni1475

    CAS  PubMed  Google Scholar 

  4. Bendelac A (1995) Positive selection of mouse NK1+ T cells by CD1-expressing cortical thymocytes. J Exp Med 182(6):2091–2096

    CAS  PubMed  Google Scholar 

  5. Bendelac A, Lantz O, Quimby ME, Yewdell JW, Bennink JR, Brutkiewicz RR (1995) CD1 recognition by mouse NK1+ T lymphocytes. Science 268(5212):863–865

    CAS  PubMed  Google Scholar 

  6. Tilloy F, Treiner E, Park SH, Garcia C, Lemonnier F, de la Salle H, Bendelac A, Bonneville M, Lantz O (1999) An invariant T cell receptor alpha chain defines a novel TAP-independent major histocompatibility complex class Ib-restricted alpha/beta T cell subpopulation in mammals. J Exp Med 189(12):1907–1921

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Treiner E, Duban L, Bahram S, Radosavljevic M, Wanner V, Tilloy F, Affaticati P, Gilfillan S, Lantz O (2003) Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1. Nature 422(6928):164–169. doi:10.1038/nature01433

    CAS  PubMed  Google Scholar 

  8. Gold MC, Eid T, Smyk-Pearson S, Eberling Y, Swarbrick GM, Langley SM, Streeter PR, Lewinsohn DA, Lewinsohn DM (2013) Human thymic MR1-restricted MAIT cells are innate pathogen-reactive effectors that adapt following thymic egress. Mucosal Immunol 6(1):35–44. doi:10.1038/mi.2012.45

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Wilson SB, Delovitch TL (2003) Janus-like role of regulatory iNKT cells in autoimmune disease and tumour immunity. Nat Rev Immunol 3(3):211–222. doi:10.1038/nri1028

    CAS  PubMed  Google Scholar 

  10. Miyazaki Y, Miyake S, Chiba A, Lantz O, Yamamura T (2011) Mucosal-associated invariant T cells regulate Th1 response in multiple sclerosis. Int Immunol 23(9):529–535. doi:10.1093/intimm/dxr047

    CAS  PubMed  Google Scholar 

  11. Le Bourhis L, Martin E, Peguillet I, Guihot A, Froux N, Core M, Levy E, Dusseaux M, Meyssonnier V, Premel V, Ngo C, Riteau B, Duban L, Robert D, Huang S, Rottman M, Soudais C, Lantz O (2010) Antimicrobial activity of mucosal-associated invariant T cells. Nat Immunol 11(8):701–708. doi:10.1038/ni.1890

    PubMed  Google Scholar 

  12. Gold MC, Cerri S, Smyk-Pearson S, Cansler ME, Vogt TM, Delepine J, Winata E, Swarbrick GM, Chua WJ, Yu YY, Lantz O, Cook MS, Null MD, Jacoby DB, Harriff MJ, Lewinsohn DA, Hansen TH, Lewinsohn DM (2010) Human mucosal associated invariant T cells detect bacterially infected cells. PLoS Biol 8(6):e1000407. doi:10.1371/journal.pbio.1000407

    PubMed Central  PubMed  Google Scholar 

  13. Wu L, Gabriel CL, Parekh VV, Van Kaer L (2009) Invariant natural killer T cells: innate-like T cells with potent immunomodulatory activities. Tissue Antigens 73(6):535–545. doi:10.1111/j.1399-0039.2009.01256.x

    CAS  PubMed  Google Scholar 

  14. Gold MC, Lewinsohn DM (2013) Co-dependents: MR1-restricted MAIT cells and their antimicrobial function. Nat Rev Microbiol 11(1):14–19. doi:10.1038/nrmicro2918

    CAS  PubMed  Google Scholar 

  15. Edholm ES, Albertorio Saez LM, Gill AL, Gill SR, Grayfer L, Haynes N, Myers JR, Robert J (2013) Nonclassical MHC class I-dependent invariant T cells are evolutionarily conserved and prominent from early development in amphibians. Proc Nat Acad Sci USA 110(35):14342–14347. doi:10.1073/pnas.1309840110

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Flajnik MF, Kaufman JF, Hsu E, Manes M, Parisot R, Du Pasquier L (1986) Major histocompatibility complex-encoded class I molecules are absent in immunologically competent Xenopus before metamorphosis. J Immunol 137(12):3891–3899

    CAS  PubMed  Google Scholar 

  17. Du Pasquier L, Weiss N (1973) The thymus during the ontogeny of the toad Xenopus laevis: growth, membrane-bound immunoglobulins and mixed lymphocyte reaction. Eur J Immunol 3(12):773–777. doi:10.1002/eji.1830031207

    PubMed  Google Scholar 

  18. Rollins-Smith LA, Flajnik MF, Blair PJ, Davis AT, Green WF (1997) Involvement of thyroid hormones in the expression of MHC class I antigens during ontogeny in Xenopus. Dev Immunol 5(2):133–144

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Salter-Cid L, Nonaka M, Flajnik MF (1998) Expression of MHC class Ia and class Ib during ontogeny: high expression in epithelia and coregulation of class Ia and lmp7 genes. J Immunol 160(6):2853–2861

    CAS  PubMed  Google Scholar 

  20. Goyos A, Ohta Y, Guselnikov S, Robert J (2009) Novel nonclassical MHC class Ib genes associated with CD8 T cell development and thymic tumors. Mol Immunol 46(8–9):1775–1786. doi:10.1016/j.molimm.2009.01.016

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Salio M, Silk JD, Jones EY, Cerundolo V (2014) Biology of CD1- and MR1-restricted T cells. Annu Rev Immunol. doi:10.1146/annurev-immunol-032713-120243

    PubMed  Google Scholar 

  22. Birkinshaw RW, Kjer-Nielsen L, Eckle SB, McCluskey J, Rossjohn J (2014) MAITs, MR1 and vitamin B metabolites. Curr Opin Immunol 26C:7–13. doi:10.1016/j.coi.2013.09.007

    Google Scholar 

  23. Le Bourhis L, Mburu YK, Lantz O (2013) MAIT cells, surveyors of a new class of antigen: development and functions. Curr Opin Immunol 25(2):174–180. doi:10.1016/j.coi.2013.01.005

    PubMed  Google Scholar 

  24. Piontkivska H, Nei M (2003) Birth-and-death evolution in primate MHC class I genes: divergence time estimates. Mol Biol Evol 20(4):601–609. doi:10.1093/molbev/msg064

    CAS  PubMed  Google Scholar 

  25. Adams EJ, Parham P (2001) Species-specific evolution of MHC class I genes in the higher primates. Immunol Rev 183:41–64

    CAS  PubMed  Google Scholar 

  26. Nei M, Gu X, Sitnikova T (1997) Evolution by the birth-and-death process in multigene families of the vertebrate immune system. Proc Natl Acad Sci USA 94(15):7799–7806

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Hughes AL, Nei M (1989) Evolution of the major histocompatibility complex: independent origin of nonclassical class I genes in different groups of mammals. Mol Biol Evol 6(6):559–579

    CAS  PubMed  Google Scholar 

  28. Rogers JH (1985) Mouse histocompatibility-related genes are not conserved in other mammals. EMBO J 4(3):749–753

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Joyce S, Tabaczewski P, Angeletti RH, Nathenson SG, Stroynowski I (1994) A nonpolymorphic major histocompatibility complex class Ib molecule binds a large array of diverse self-peptides. J Exp Med 179(2):579–588

    CAS  PubMed  Google Scholar 

  30. Rotzschke O, Falk K, Stevanovic S, Grahovac B, Soloski MJ, Jung G, Rammensee HG (1993) Qa-2 molecules are peptide receptors of higher stringency than ordinary class I molecules. Nature 361(6413):642–644. doi:10.1038/361642a0

    CAS  PubMed  Google Scholar 

  31. Lee N, Malacko AR, Ishitani A, Chen MC, Bajorath J, Marquardt H, Geraghty DE (1995) The membrane-bound and soluble forms of HLA-G bind identical sets of endogenous peptides but differ with respect to TAP association. Immunity 3(5):591–600

    CAS  PubMed  Google Scholar 

  32. Diehl M, Munz C, Keilholz W, Stevanovic S, Holmes N, Loke YW, Rammensee HG (1996) Nonclassical HLA-G molecules are classical peptide presenters. Curr Biol 6(3):305–314

    CAS  PubMed  Google Scholar 

  33. Fuzzi B, Rizzo R, Criscuoli L, Noci I, Melchiorri L, Scarselli B, Bencini E, Menicucci A, Baricordi OR (2002) HLA-G expression in early embryos is a fundamental prerequisite for the obtainment of pregnancy. Eur J Immunol 32(2):311–315. doi:10.1002/1521-4141(200202)32:2<311:AID-IMMU311>3.0.CO;2-8

    CAS  PubMed  Google Scholar 

  34. Marine JB, Shirakata Y, Wadsworth SA, Hooley JJ, Handy DE, Coligan JE (1993) Role of the Q10 class I regulatory element region 1 in controlling tissue-specific expression in vivo. J Immunol 151(4):1989–1997

    CAS  PubMed  Google Scholar 

  35. Ellis SA, Palmer MS, McMichael AJ (1990) Human trophoblast and the choriocarcinoma cell line BeWo express a truncated HLA Class I molecule. J Immunol 144(2):731–735

    CAS  PubMed  Google Scholar 

  36. Loke YW, King A, Burrows T, Gardner L, Bowen M, Hiby S, Howlett S, Holmes N, Jacobs D (1997) Evaluation of trophoblast HLA-G antigen with a specific monoclonal antibody. Tissue Antigens 50(2):135–146

    CAS  PubMed  Google Scholar 

  37. Dascher CC (2007) Evolutionary biology of CD1. Curr Top Microbiol Immunol 314:3–26

    CAS  PubMed  Google Scholar 

  38. Huang S, Martin E, Kim S, Yu L, Soudais C, Fremont DH, Lantz O, Hansen TH (2009) MR1 antigen presentation to mucosal-associated invariant T cells was highly conserved in evolution. Proc Natl Acad Sci USA 106(20):8290–8295. doi:10.1073/pnas.0903196106

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Zeng Z, Castano AR, Segelke BW, Stura EA, Peterson PA, Wilson IA (1997) Crystal structure of mouse CD1: an MHC-like fold with a large hydrophobic binding groove. Science 277(5324):339–345

    CAS  PubMed  Google Scholar 

  40. Koch M, Stronge VS, Shepherd D, Gadola SD, Mathew B, Ritter G, Fersht AR, Besra GS, Schmidt RR, Jones EY, Cerundolo V (2005) The crystal structure of human CD1d with and without alpha-galactosylceramide. Nat Immunol 6(8):819–826. doi:10.1038/ni1225

    CAS  PubMed  Google Scholar 

  41. Kjer-Nielsen L, Patel O, Corbett AJ, Le Nours J, Meehan B, Liu L, Bhati M, Chen Z, Kostenko L, Reantragoon R, Williamson NA, Purcell AW, Dudek NL, McConville MJ, O’Hair RA, Khairallah GN, Godfrey DI, Fairlie DP, Rossjohn J, McCluskey J (2012) MR1 presents microbial vitamin B metabolites to MAIT cells. Nature 491(7426):717–723. doi:10.1038/nature11605

    CAS  PubMed  Google Scholar 

  42. Yamaguchi H, Kurosawa Y, Hashimoto K (1998) Expanded genomic organization of conserved mammalian MHC class I-related genes, human MR1 and its murine ortholog. Biochem Biophys Res Commun 250(3):558–564. doi:10.1006/bbrc.1998.9353

    CAS  PubMed  Google Scholar 

  43. Shiina T, Ando A, Suto Y, Kasai F, Shigenari A, Takishima N, Kikkawa E, Iwata K, Kuwano Y, Kitamura Y, Matsuzawa Y, Sano K, Nogami M, Kawata H, Li S, Fukuzumi Y, Yamazaki M, Tashiro H, Tamiya G, Kohda A, Okumura K, Ikemura T, Soeda E, Mizuki N, Kimura M, Bahram S, Inoko H (2001) Genomic anatomy of a premier major histocompatibility complex paralogous region on chromosome 1q21-q22. Genome Res 11(5):789–802. doi:10.1101/gr.175801

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Shiina T, Inoko H (2001) Comparative genome analysis of MHC region. Tanpakushitsu kakusan koso protein, nucleic acid, enzyme 46(16 Suppl):2246–2253

    CAS  PubMed  Google Scholar 

  45. Flajnik MF, Kasahara M (2001) Comparative genomics of the MHC: glimpses into the evolution of the adaptive immune system. Immunity 15(3):351–362

    CAS  PubMed  Google Scholar 

  46. Salomonsen J, Sorensen MR, Marston DA, Rogers SL, Collen T, van Hateren A, Smith AL, Beal RK, Skjodt K, Kaufman J (2005) Two CD1 genes map to the chicken MHC, indicating that CD1 genes are ancient and likely to have been present in the primordial MHC. Proc Natl Acad Sci USA 102(24):8668–8673. doi:10.1073/pnas.0409213102

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Miller MM, Wang C, Parisini E, Coletta RD, Goto RM, Lee SY, Barral DC, Townes M, Roura-Mir C, Ford HL, Brenner MB, Dascher CC (2005) Characterization of two avian MHC-like genes reveals an ancient origin of the CD1 family. Proc Natl Acad Sci USA 102(24):8674–8679. doi:10.1073/pnas.0500105102

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Hee CS, Gao S, Loll B, Miller MM, Uchanska-Ziegler B, Daumke O, Ziegler A (2010) Structure of a classical MHC class I molecule that binds “non-classical” ligands. PLoS Biol 8(12):e1000557. doi:10.1371/journal.pbio.1000557

    PubMed Central  PubMed  Google Scholar 

  49. Rossjohn J, Pellicci DG, Patel O, Gapin L, Godfrey DI (2012) Recognition of CD1d-restricted antigens by natural killer T cells. Nat Rev Immunol 12(12):845–857. doi:10.1038/nri3328

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Nair S (2011) Whats in a name? J Maxillofac Oral Surg 10(3):183–184. doi:10.1007/s12663-011-0277-y

    PubMed Central  PubMed  Google Scholar 

  51. Lantz O, Bendelac A (1994) An invariant T cell receptor alpha chain is used by a unique subset of major histocompatibility complex class I-specific CD4+ and CD4-8− T cells in mice and humans. J Exp Med 180(3):1097–1106

    CAS  PubMed  Google Scholar 

  52. Kashiwase K, Kikuchi A, Ando Y, Nicol A, Porcelli SA, Tokunaga K, Omine M, Satake M, Juji T, Nieda M, Koezuka Y (2003) The CD1d natural killer T-cell antigen presentation pathway is highly conserved between humans and rhesus macaques. Immunogenetics 54(11):776–781. doi:10.1007/s00251-002-0527-8

    CAS  PubMed  Google Scholar 

  53. Matsuura A, Kinebuchi M, Chen HZ, Katabami S, Shimizu T, Hashimoto Y, Kikuchi K, Sato N (2000) NKT cells in the rat: organ-specific distribution of NK T cells expressing distinct V alpha 14 chains. J Immunol 164(6):3140–3148

    CAS  PubMed  Google Scholar 

  54. Kawano T, Cui J, Koezuka Y, Toura I, Kaneko Y, Motoki K, Ueno H, Nakagawa R, Sato H, Kondo E, Koseki H, Taniguchi M (1997) CD1d-restricted and TCR-mediated activation of valpha14 NKT cells by glycosylceramides. Science 278(5343):1626–1629

    CAS  PubMed  Google Scholar 

  55. Kinjo Y, Illarionov P, Vela JL, Pei B, Girardi E, Li X, Li Y, Imamura M, Kaneko Y, Okawara A, Miyazaki Y, Gomez-Velasco A, Rogers P, Dahesh S, Uchiyama S, Khurana A, Kawahara K, Yesilkaya H, Andrew PW, Wong CH, Kawakami K, Nizet V, Besra GS, Tsuji M, Zajonc DM, Kronenberg M (2011) Invariant natural killer T cells recognize glycolipids from pathogenic Gram-positive bacteria. Nat Immunol 12(10):966–974. doi:10.1038/ni.2096

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Sriram V, Du W, Gervay-Hague J, Brutkiewicz RR (2005) Cell wall glycosphingolipids of Sphingomonas paucimobilis are CD1d-specific ligands for NKT cells. Eur J Immunol 35(6):1692–1701. doi:10.1002/eji.200526157

    CAS  PubMed  Google Scholar 

  57. Kinjo Y, Tupin E, Wu D, Fujio M, Garcia-Navarro R, Benhnia MR, Zajonc DM, Ben-Menachem G, Ainge GD, Painter GF, Khurana A, Hoebe K, Behar SM, Beutler B, Wilson IA, Tsuji M, Sellati TJ, Wong CH, Kronenberg M (2006) Natural killer T cells recognize diacylglycerol antigens from pathogenic bacteria. Nat Immunol 7(9):978–986. doi:10.1038/ni1380

    CAS  PubMed  Google Scholar 

  58. Burrows SR, Chen Z, Archbold JK, Tynan FE, Beddoe T, Kjer-Nielsen L, Miles JJ, Khanna R, Moss DJ, Liu YC, Gras S, Kostenko L, Brennan RM, Clements CS, Brooks AG, Purcell AW, McCluskey J, Rossjohn J (2010) Hard wiring of T cell receptor specificity for the major histocompatibility complex is underpinned by TCR adaptability. Proc Natl Acad Sci USA 107(23):10608–10613. doi:10.1073/pnas.1004926107

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Rudolph MG, Stanfield RL, Wilson IA (2006) How TCRs bind MHCs, peptides, and coreceptors. Annu Rev Immunol 24:419–466. doi:10.1146/annurev.immunol.23.021704.115658

    CAS  PubMed  Google Scholar 

  60. Borg NA, Wun KS, Kjer-Nielsen L, Wilce MC, Pellicci DG, Koh R, Besra GS, Bharadwaj M, Godfrey DI, McCluskey J, Rossjohn J (2007) CD1d-lipid-antigen recognition by the semi-invariant NKT T-cell receptor. Nature 448(7149):44–49. doi:10.1038/nature05907

    CAS  PubMed  Google Scholar 

  61. Pellicci DG, Patel O, Kjer-Nielsen L, Pang SS, Sullivan LC, Kyparissoudis K, Brooks AG, Reid HH, Gras S, Lucet IS, Koh R, Smyth MJ, Mallevaey T, Matsuda JL, Gapin L, McCluskey J, Godfrey DI, Rossjohn J (2009) Differential recognition of CD1d-alpha-galactosyl ceramide by the V beta 8.2 and V beta 7 semi-invariant NKT T cell receptors. Immunity 31(1):47–59. doi:10.1016/j.immuni.2009.04.018

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Scott-Browne JP, Matsuda JL, Mallevaey T, White J, Borg NA, McCluskey J, Rossjohn J, Kappler J, Marrack P, Gapin L (2007) Germline-encoded recognition of diverse glycolipids by natural killer T cells. Nat Immunol 8(10):1105–1113. doi:10.1038/ni1510

    CAS  PubMed  Google Scholar 

  63. Florence WC, Xia C, Gordy LE, Chen W, Zhang Y, Scott-Browne J, Kinjo Y, Yu KO, Keshipeddy S, Pellicci DG, Patel O, Kjer-Nielsen L, McCluskey J, Godfrey DI, Rossjohn J, Richardson SK, Porcelli SA, Howell AR, Hayakawa K, Gapin L, Zajonc DM, Wang PG, Joyce S (2009) Adaptability of the semi-invariant natural killer T-cell receptor towards structurally diverse CD1d-restricted ligands. EMBO J 28(23):3781. doi:10.1038/emboj.2009.348

    CAS  PubMed  Google Scholar 

  64. Godfrey DI, Rossjohn J (2011) New ways to turn on NKT cells. J Exp Med 208(6):1121–1125. doi:10.1084/jem.20110983

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Venkataswamy MM, Porcelli SA (2010) Lipid and glycolipid antigens of CD1d-restricted natural killer T cells. Semin Immunol 22(2):68–78. doi:10.1016/j.smim.2009.10.003

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Tsukamoto K, Deakin JE, Graves JA, Hashimoto K (2013) Exceptionally high conservation of the MHC class I-related gene, MR1, among mammals. Immunogenetics 65(2):115–124. doi:10.1007/s00251-012-0666-5

    CAS  PubMed  Google Scholar 

  67. Lion J, Debuysscher V, Wlodarczyk A, Hodroge A, Serriari NE, Choteau L, Ouled-haddou H, Plistat M, Lassoued K, Lantz O, Treiner E (2013) MR1B, a natural spliced isoform of the MHC-related 1 protein, is expressed as homodimers at the cell surface and activates MAIT cells. Eur J Immunol 43(5):1363–1373. doi:10.1002/eji.201242461

    CAS  PubMed  Google Scholar 

  68. Reantragoon R, Kjer-Nielsen L, Patel O, Chen Z, Illing PT, Bhati M, Kostenko L, Bharadwaj M, Meehan B, Hansen TH, Godfrey DI, Rossjohn J, McCluskey J (2012) Structural insight into MR1-mediated recognition of the mucosal associated invariant T cell receptor. J Exp Med 209(4):761–774. doi:10.1084/jem.20112095

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Le Bourhis L, Guerri L, Dusseaux M, Martin E, Soudais C, Lantz O (2011) Mucosal-associated invariant T cells: unconventional development and function. Trends Immunol 32(5):212–218. doi:10.1016/j.it.2011.02.005

    PubMed  Google Scholar 

  70. Dusseaux M, Martin E, Serriari N, Peguillet I, Premel V, Louis D, Milder M, Le Bourhis L, Soudais C, Treiner E, Lantz O (2011) Human MAIT cells are xenobiotic-resistant, tissue-targeted, CD161hi IL-17-secreting T cells. Blood 117(4):1250–1259. doi:10.1182/blood-2010-08-303339

    CAS  PubMed  Google Scholar 

  71. Le Bourhis L, Dusseaux M, Bohineust A, Bessoles S, Martin E, Premel V, Core M, Sleurs D, Serriari NE, Treiner E, Hivroz C, Sansonetti P, Gougeon ML, Soudais C, Lantz O (2013) MAIT cells detect and efficiently lyse bacterially-infected epithelial cells. PLoS Pathog 9(10):e1003681. doi:10.1371/journal.ppat.1003681

    PubMed Central  PubMed  Google Scholar 

  72. Flajnik MF, Kasahara M, Shum BP, Salter-Cid L, Taylor E, Du Pasquier L (1993) A novel type of class I gene organization in vertebrates: a large family of non-MHC-linked class I genes is expressed at the RNA level in the amphibian Xenopus. EMBO J 12(11):4385–4396

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Goyos A, Sowa J, Ohta Y, Robert J (2011) Remarkable conservation of distinct nonclassical MHC class I lineages in divergent amphibian species. J Immunol 186(1):372–381. doi:10.4049/jimmunol.1001467

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Sammut B, Du Pasquier L, Ducoroy P, Laurens V, Marcuz A, Tournefier A (1999) Axolotl MHC architecture and polymorphism. Eur J Immunol 29(9):2897–2907. doi:10.1002/(SICI)1521-4141(199909)29:09<2897:AID-IMMU2897>3.0.CO;2-2

    CAS  PubMed  Google Scholar 

  75. Bartl S, Baish MA, Flajnik MF, Ohta Y (1997) Identification of class I genes in cartilaginous fish, the most ancient group of vertebrates displaying an adaptive immune response. J Immunol 159(12):6097–6104

    CAS  PubMed  Google Scholar 

  76. Wang C, Perera TV, Ford HL, Dascher CC (2003) Characterization of a divergent non-classical MHC class I gene in sharks. Immunogenetics 55(1):57–61. doi:10.1007/s00251-003-0542-4

    CAS  PubMed  Google Scholar 

  77. Lukacs MF, Harstad H, Bakke HG, Beetz-Sargent M, McKinnel L, Lubieniecki KP, Koop BF, Grimholt U (2010) Comprehensive analysis of MHC class I genes from the U-, S-, and Z-lineages in Atlantic salmon. BMC Genom 11:154. doi:10.1186/1471-2164-11-154

    Google Scholar 

  78. Dijkstra JM, Katagiri T, Hosomichi K, Yanagiya K, Inoko H, Ototake M, Aoki T, Hashimoto K, Shiina T (2007) A third broad lineage of major histocompatibility complex (MHC) class I in teleost fish; MHC class II linkage and processed genes. Immunogenetics 59(4):305–321. doi:10.1007/s00251-007-0198-6

    CAS  PubMed  Google Scholar 

  79. Star B, Nederbragt AJ, Jentoft S, Grimholt U, Malmstrom M, Gregers TF, Rounge TB, Paulsen J, Solbakken MH, Sharma A, Wetten OF, Lanzen A, Winer R, Knight J, Vogel JH, Aken B, Andersen O, Lagesen K, Tooming-Klunderud A, Edvardsen RB, Tina KG, Espelund M, Nepal C, Previti C, Karlsen BO, Moum T, Skage M, Berg PR, Gjoen T, Kuhl H, Thorsen J, Malde K, Reinhardt R, Du L, Johansen SD, Searle S, Lien S, Nilsen F, Jonassen I, Omholt SW, Stenseth NC, Jakobsen KS (2011) The genome sequence of Atlantic cod reveals a unique immune system. Nature 477(7363):207–210. doi:10.1038/nature10342

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Evans BJ (2008) Genome evolution and speciation genetics of clawed frogs (Xenopus and Silurana). Front Biosci 13:4687–4706

    CAS  PubMed  Google Scholar 

  81. Evans BJ, Kelley DB, Tinsley RC, Melnick DJ, Cannatella DC (2004) A mitochondrial DNA phylogeny of African clawed frogs: phylogeography and implications for polyploid evolution. Mol Phylogenet Evol 33(1):197–213. doi:10.1016/j.ympev.2004.04.018

    CAS  PubMed  Google Scholar 

  82. Edholm ESAG, Taran J, DeJesus Andino F, Otha Y, Robert J (2014) Unusual evolutionary conservation and specific adaptations of a large family of nonclassical MHC class Ib genes across different degrees of genome ploidy in the amphibian subfamily Xenopodinae. Immunogenetics. doi:10.1007/s0025101407745

    Google Scholar 

  83. Goyos A, Guselnikov S, Chida AS, Sniderhan LF, Maggirwar SB, Nedelkovska H, Robert J (2007) Involvement of nonclassical MHC class Ib molecules in heat shock protein-mediated anti-tumor responses. Eur J Immunol 37(6):1494–1501

    CAS  PubMed  Google Scholar 

  84. Courtet M, Flajnik M, Du Pasquier L (2001) Major histocompatibility complex and immunoglobulin loci visualized by in situ hybridization on Xenopus chromosomes. Dev Comp Immunol 25(2):149–157

    CAS  PubMed  Google Scholar 

  85. Nakanishi T, Toda H, Shibasaki Y, Somamoto T (2011) Cytotoxic T cells in teleost fish. Dev Comp Immunol 35(12):1317–1323

    CAS  PubMed  Google Scholar 

  86. Somamoto T, Koppang EO, Fischer U (2014) Antiviral functions of CD8(+) cytotoxic T cells in teleost fish. Dev Comp Immunol 43(2):197–204. doi:10.1016/j.dci.2013.07.014

    CAS  PubMed  Google Scholar 

  87. Toda H, Saito Y, Koike T, Takizawa F, Araki K, Yabu T, Somamoto T, Suetake H, Suzuki Y, Ototake M, Moritomo T, Nakanishi T (2011) Conservation of characteristics and functions of CD4 positive lymphocytes in a teleost fish. Dev Comp Immunol 35(6):650–660. doi:10.1016/j.dci.2011.01.013

    CAS  PubMed  Google Scholar 

  88. Robert J, Ohta Y (2009) Comparative and developmental study of the immune system in Xenopus. Dev Dyn 238(6):1249–1270. doi:10.1002/dvdy.21891

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Chida AS, Goyos A, Robert J (2011) Phylogenetic and developmental study of CD4, CD8 alpha and beta T cell co-receptor homologs in two amphibian species, Xenopus tropicalis and Xenopus laevis. Dev Comp Immunol 35(3):366–377. doi:10.1016/j.dci.2010.11.005

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Laing KJ, Zou JJ, Purcell MK, Phillips R, Secombes CJ, Hansen JD (2006) Evolution of the CD4 family: teleost fish possess two divergent forms of CD4 in addition to lymphocyte activation gene-3. J Immunol 177(6):3939–3951

    CAS  PubMed  Google Scholar 

  91. Dijkstra JM, Somamoto T, Moore L, Hordvik I, Ototake M, Fischer U (2006) Identification and characterization of a second CD4-like gene in teleost fish. Mol Immunol 43(5):410–419. doi:10.1016/j.molimm.2005.03.005

    CAS  PubMed  Google Scholar 

  92. Edholm ES, Stafford JL, Quiniou SM, Waldbieser G, Miller NW, Bengten E, Wilson M (2007) Channel catfish, Ictalurus punctatus, CD4-like molecules. Dev Comp Immunol 31(2):172–187. doi:10.1016/j.dci.2006.05.012

    CAS  PubMed  Google Scholar 

  93. Venkatesh B, Lee AP, Ravi V, Maurya AK, Lian MM, Swann JB, Ohta Y, Flajnik MF, Sutoh Y, Kasahara M, Hoon S, Gangu V, Roy SW, Irimia M, Korzh V, Kondrychyn I, Lim ZW, Tay BH, Tohari S, Kong KW, Ho S, Lorente-Galdos B, Quilez J, Marques-Bonet T, Raney BJ, Ingham PW, Tay A, Hillier LW, Minx P, Boehm T, Wilson RK, Brenner S, Warren WC (2014) Elephant shark genome provides unique insights into gnathostome evolution. Nature 505(7482):174–179. doi:10.1038/nature12826

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Ohtani M, Hayashi N, Hashimoto K, Nakanishi T, Dijkstra JM (2008) Comprehensive clarification of two paralogous interleukin 4/13 loci in teleost fish. Immunogenetics 60(7):383–397. doi:10.1007/s00251-008-0299-x

    CAS  PubMed  Google Scholar 

  95. Li JH, Shao JZ, Xiang LX, Wen Y (2007) Cloning, characterization and expression analysis of pufferfish interleukin-4 cDNA: the first evidence of Th2-type cytokine in fish. Mol Immunol 44(8):2078–2086. doi:10.1016/j.molimm.2006.09.010

    CAS  PubMed  Google Scholar 

  96. Castro R, Bernard D, Lefranc MP, Six A, Benmansour A, Boudinot P (2011) T cell diversity and TcR repertoires in teleost fish. Fish Shellfish Immunol 31(5):644–654. doi:10.1016/j.fsi.2010.08.016

    CAS  PubMed  Google Scholar 

  97. Horton TL, Minter R, Stewart R, Ritchie P, Watson MD, Horton JD (2000) Xenopus NK cells identified by novel monoclonal antibodies. Eur J Immunol 30(2):604–613. doi:10.1002/1521-4141(200002)30:2<604:AID-IMMU604>3.0.CO;2-X

    CAS  PubMed  Google Scholar 

  98. Robert J, Gantress J, Rau L, Bell A, Cohen N (2002) Minor histocompatibility antigen-specific MHC-restricted CD8 T cell responses elicited by heat shock proteins. J Immunol 168(4):1697–1703

    CAS  PubMed  Google Scholar 

  99. Goyos A, Cohen N, Gantress J, Robert J (2004) Anti-tumor MHC class Ia-unrestricted CD8 T cell cytotoxicity elicited by the heat shock protein gp96. Eur J Immunol 34(9):2449–2458. doi:10.1002/eji.200425105

    CAS  PubMed  Google Scholar 

  100. Rau L, Cohen N, Robert J (2001) MHC-restricted and -unrestricted CD8 T cells: an evolutionary perspective. Transplantation 72(11):1830–1835

    CAS  PubMed  Google Scholar 

  101. Rau L, Gantress J, Bell A, Stewart R, Horton T, Cohen N, Horton J, Robert J (2002) Identification and characterization of Xenopus CD8+ T cells expressing an NK cell-associated molecule. Eur J Immunol 32(6):1574–1583. doi:10.1002/1521-4141(200206)32:6<1574:AID-IMMU1574>3.0.CO;2-4

    CAS  PubMed  Google Scholar 

  102. Behar SM, Podrebarac TA, Roy CJ, Wang CR, Brenner MB (1999) Diverse TCRs recognize murine CD1. J Immunol 162(1):161–167

    CAS  PubMed  Google Scholar 

  103. Zhao J, Weng X, Bagchi S, Wang CR (2014) Polyclonal type II natural killer T cells require PLZF and SAP for their development and contribute to CpG-mediated antitumor response. Proc Natl Acad Sci USA 111(7):2674–2679. doi:10.1073/pnas.1323845111

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Nieuwkoop PD, Faber J (1967) Normal tables of Xenopus laevis (Daudin). In: Nieuwkoop PD (ed) A systematic and chronological survey of the development from the fertilized egg till the end of metamorphosis, 2nd edn. North-Holland, Amsterdam, pp 162–188

    Google Scholar 

  105. Grayfer L, Andino FDJ, Chen G, Chinchar GV, Robert J (2012) Immune evasion strategies of ranaviruses and innate immune responses to these emerging pathogens. Viruses 4(7):1075–1092. doi:10.3390/v4071075

    CAS  PubMed Central  PubMed  Google Scholar 

  106. De Jesus Andino F, Chen G, Li Z, Grayfer L, Robert J (2012) Susceptibility of Xenopus laevis tadpoles to infection by the ranavirus Frog-Virus 3 correlates with a reduced and delayed innate immune response in comparison with adult frogs. Virology 432(2):435–443. doi:10.1016/j.virol.2012.07.001

    Google Scholar 

  107. Haynes-Gilmore N, Banach M, Edholm ES, Lord E, Robert J (2014) A critical role of nonclassical MHC in tumor immune evasion in the amphibian Xenopus model. Carcinogenesis. doi:10.1093/carcin/bgu100

    PubMed  Google Scholar 

  108. Bjorkman PJ, Saper MA, Samraoui B, Bennett WS, Strominger JL, Wiley DC (1987) Structure of the human class I histocompatibility antigen, HLA-A2. Nature 329(6139):506–512. doi:10.1038/329506a0

    CAS  PubMed  Google Scholar 

  109. Madden DR (1995) The three-dimensional structure of peptide–MHC complexes. Annu Rev Immunol 13:587–622. doi:10.1146/annurev.iy.13.040195.003103

    CAS  PubMed  Google Scholar 

  110. Hughes AL, Nei M (1988) Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection. Nature 335(6186):167–170. doi:10.1038/335167a0

    CAS  PubMed  Google Scholar 

  111. O’Callaghan CA, Tormo J, Willcox BE, Braud VM, Jakobsen BK, Stuart DI, McMichael AJ, Bell JI, Jones EY (1998) Structural features impose tight peptide binding specificity in the nonclassical MHC molecule HLA-E. Mol Cell 1(4):531–541

    PubMed  Google Scholar 

  112. O’Callaghan CA, Tormo J, Willcox BE, Blundell CD, Jakobsen BK, Stuart DI, McMichael AJ, Bell JI, Jones EY (1998) Production, crystallization, and preliminary X-ray analysis of the human MHC class Ib molecule HLA-E. Protein Sci 7(5):1264–1266. doi:10.1002/pro.5560070525

    PubMed Central  PubMed  Google Scholar 

  113. Wang CR, Lindahl KF, Deisenhofer J (1996) Crystal structure of the MHC class Ib molecule H2-M3. Res Immunol 147(5):313–321

    CAS  PubMed  Google Scholar 

  114. Patel O, Kjer-Nielsen L, Le Nours J, Eckle SB, Birkinshaw R, Beddoe T, Corbett AJ, Liu L, Miles JJ, Meehan B, Reantragoon R, Sandoval-Romero ML, Sullivan LC, Brooks AG, Chen Z, Fairlie DP, McCluskey J, Rossjohn J (2013) Recognition of vitamin B metabolites by mucosal-associated invariant T cells. Nat Commun 4:2142. doi:10.1038/ncomms3142

    PubMed  Google Scholar 

  115. Saper MA, Bjorkman PJ, Wiley DC (1991) Refined structure of the human histocompatibility antigen HLA-A2 at 2.6 A resolution. J Mol Biol 219(2):277–319

    CAS  PubMed  Google Scholar 

  116. Anderson G, Moore NC, Owen JJ, Jenkinson EJ (1996) Cellular interactions in thymocyte development. Annu Rev Immunol 14:73–99. doi:10.1146/annurev.immunol.14.1.73

    CAS  PubMed  Google Scholar 

  117. Jameson SC, Hogquist KA, Bevan MJ (1995) Positive selection of thymocytes. Annu Rev Immunol 13:93–126. doi:10.1146/annurev.iy.13.040195.000521

    CAS  PubMed  Google Scholar 

  118. Urdahl KB, Sun JC, Bevan MJ (2002) Positive selection of MHC class Ib-restricted CD8(+) T cells on hematopoietic cells. Nat Immunol 3(8):772–779. doi:10.1038/ni814

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Kisielow J, Tortola L, Weber J, Karjalainen K, Kopf M (2011) Evidence for the divergence of innate and adaptive T-cell precursors before commitment to the alphabeta and gammadelta lineages. Blood 118(25):6591–6600. doi:10.1182/blood-2011-05-352732

    CAS  PubMed  Google Scholar 

  120. Turpen JB, Smith PB (1989) Precursor immigration and thymocyte succession during larval development and metamorphosis in Xenopus. J Immunol 142(1):41–47

    CAS  PubMed  Google Scholar 

  121. Gravenor I, Horton TL, Ritchie P, Flint E, Horton JD (1995) Ontogeny and thymus-dependence of T cell surface antigens in Xenopus: flow cytometric studies on monoclonal antibody-stained thymus and spleen. Dev Comp Immunol 19(6):507–523

    CAS  PubMed  Google Scholar 

  122. Du Pasquier L, Flajnik MF (1990) Expression of MHC class II antigens during Xenopus development. Dev Immunol 1(2):85–95

    PubMed Central  PubMed  Google Scholar 

  123. Rollins-Smith LA, Barker KS, Davis AT (1997) Involvement of glucocorticoids in the reorganization of the amphibian immune system at metamorphosis. Dev Immunol 5(2):145–152

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Berzins SP, Uldrich AP, Pellicci DG, McNab F, Hayakawa Y, Smyth MJ, Godfrey DI (2004) Parallels and distinctions between T and NKT cell development in the thymus. Immunol Cell Biol 82(3):269–275. doi:10.1111/j.0818-9641.2004.01256.x

    PubMed  Google Scholar 

  125. Gapin L (2009) Where do MAIT cells fit in the family of unconventional T cells? PLoS Biol 7(3):e70. doi:10.1371/journal.pbio.1000070

    PubMed  Google Scholar 

  126. Tilloy F, Di Santo JP, Bendelac A, Lantz O (1999) Thymic dependence of invariant V alpha 14+ natural killer-T cell development. Eur J Immunol 29(10):3313–3318

    CAS  PubMed  Google Scholar 

  127. Bix M, Raulet D (1992) Inefficient positive selection of T cells directed by haematopoietic cells. Nature 359(6393):330–333. doi:10.1038/359330a0

    CAS  PubMed  Google Scholar 

  128. Gapin L, Matsuda JL, Surh CD, Kronenberg M (2001) NKT cells derive from double-positive thymocytes that are positively selected by CD1d. Nat Immunol 2(10):971–978. doi:10.1038/ni710

    CAS  PubMed  Google Scholar 

  129. Robert J, Cohen N (1998) Ontogeny of CTX expression in Xenopus. Dev Comp Immunol 22(5–6):605–612

    CAS  PubMed  Google Scholar 

  130. Robert J, Cohen N (1999) In vitro differentiation of a CD4/CD8 double-positive equivalent thymocyte subset in adult Xenopus. Int Immunol 11(4):499–508

    CAS  PubMed  Google Scholar 

  131. Chretien I, Robert J, Marcuz A, Garcia-Sanz JA, Courtet M, Du Pasquier L (1996) CTX, a novel molecule specifically expressed on the surface of cortical thymocytes in Xenopus. Eur J Immunol 26(4):780–791. doi:10.1002/eji.1830260409

    CAS  PubMed  Google Scholar 

  132. Russ JH, Horton JD (1987) Cytoarchitecture of the Xenopus thymus following gamma-irradiation. Development 100(1):95–105

    CAS  PubMed  Google Scholar 

  133. Robert J, Chretien I, Guiet C, Du Pasquier L (1997) Cross-linking CTX, a novel thymocyte-specific molecule, inhibits the growth of lymphoid tumor cells in Xenopus. Mol Immunol 34(2):133–143

    CAS  PubMed  Google Scholar 

  134. Chung B, Aoukaty A, Dutz J, Terhorst C, Tan R (2005) Signaling lymphocytic activation molecule-associated protein controls NKT cell functions. J Immunol 174(6):3153–3157

    CAS  PubMed  Google Scholar 

  135. Griewank K, Borowski C, Rietdijk S, Wang N, Julien A, Wei DG, Mamchak AA, Terhorst C, Bendelac A (2007) Homotypic interactions mediated by Slamf1 and Slamf6 receptors control NKT cell lineage development. Immunity 27(5):751–762. doi:10.1016/j.immuni.2007.08.020

    CAS  PubMed Central  PubMed  Google Scholar 

  136. Coles MC, Raulet DH (2000) NK1.1+ T cells in the liver arise in the thymus and are selected by interactions with class I molecules on CD4+ CD8+ cells. J Immunol 164(5):2412–2418

    CAS  PubMed  Google Scholar 

  137. Godfrey DI, Berzins SP (2007) Control points in NKT-cell development. Nat Rev Immunol 7(7):505–518. doi:10.1038/nri2116

    CAS  PubMed  Google Scholar 

  138. Chun T, Page MJ, Gapin L, Matsuda JL, Xu H, Nguyen H, Kang HS, Stanic AK, Joyce S, Koltun WA, Chorney MJ, Kronenberg M, Wang CR (2003) CD1d-expressing dendritic cells but not thymic epithelial cells can mediate negative selection of NKT cells. J Exp Med 197(7):907–918. doi:10.1084/jem.20021366

    CAS  PubMed Central  PubMed  Google Scholar 

  139. Martin E, Treiner E, Duban L, Guerri L, Laude H, Toly C, Premel V, Devys A, Moura IC, Tilloy F, Cherif S, Vera G, Latour S, Soudais C, Lantz O (2009) Stepwise development of MAIT cells in mouse and human. PLoS Biol 7(3):e54. doi:10.1371/journal.pbio.1000054

    PubMed  Google Scholar 

  140. Kishimoto H, Sprent J (1997) Negative selection in the thymus includes semimature T cells. J Exp Med 185(2):263–271

    CAS  PubMed Central  PubMed  Google Scholar 

  141. Pellicci DG, Uldrich AP, Kyparissoudis K, Crowe NY, Brooks AG, Hammond KJ, Sidobre S, Kronenberg M, Smyth MJ, Godfrey DI (2003) Intrathymic NKT cell development is blocked by the presence of alpha-galactosylceramide. Eur J Immunol 33(7):1816–1823. doi:10.1002/eji.200323894

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Nicolas Cohen for helpful discussions and critical reading of the manuscript. This research was supported by Grants R24-AI-059830 from National Institute of Allergy and Infectious Diseases (NIH/NIAID).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques Robert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edholm, ES., Grayfer, L. & Robert, J. Evolution of nonclassical MHC-dependent invariant T cells. Cell. Mol. Life Sci. 71, 4763–4780 (2014). https://doi.org/10.1007/s00018-014-1701-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-014-1701-5

Keywords

Navigation