Skip to main content

Advertisement

Log in

Complete sequencing and expression of three complement components, C1r, C4 and C1 inhibitor, of the classical activation pathway of the complement system in rainbow trout Oncorhynchus mykiss

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

Three complement components, C1r, C4 and C1 inhibitor, of the classical activation pathway have been fully sequenced and their expression investigated in rainbow trout (Oncorhynchus mykiss). Trout C1r cDNA encodes a 707-amino-acid (aa) protein with a theoretical M r of 77,200. The trout translation shows highest homology with carp C1r/s, and lower, equal homologies to mammalian C1r and C1s, and MASPs from other vertebrate species. However, phylogenetic analysis and structural features suggest that the trout sequence, together with the two carp sequences, are the orthologues of mammalian C1r. The trout C4 cDNA encodes a 1,724-aa protein with a theoretical M r of 192,600. The trout translation shows higher homologies to the carp C4B and medaka C4, but lower homologies to C4 from other species and the carp C4A. It has a predicted signal peptide of 22 aa, a α-chain of 773 aa, a β-chain of 635 aa and a λ-chain of 288 aa. Trout C1 inhibitor cDNA encodes a 611-aa protein with a theoretical M r of 68,700. The trout translation has a C-terminal serpin domain with high homologies with mammalian counterparts (~37% identities), and a longer N-terminus, with no significant homology to other serpins, which contains two Ig-like domains. A molecule containing two Ig-like domains followed by a serpin domain, has also been found in an EST clone from another bony fish, the Japanese flounder. This suggests a unique structural feature of C1 inhibitor in fish. The functional significance of the Ig domains is discussed. The liver is the major site of expression of the three trout complement components, C1r, C4 and C1 inhibitor, although their expression is also detectable in other tissues. The extra-hepatic expression of complement genes may be important for local protection and inflammatory responses. Low-level constitutive expression of the three components was also detectable in a trout monocyte/macrophage cell line RTS-11, but only the expression of C4 could be upregulated by LPS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Al-Sharif W Z, Sunyer J O, Lambris J D, Smith LC (1998) Sea urchin coelomocytes specifically express a homologue of the complement component C3. J Immunol 160:2983–2997

    CAS  PubMed  Google Scholar 

  • Altschul S F, Gish W, Miller W, Myers E W, Lipman D J (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Altschul S F, Madden T L, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman D J (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25:3389–3402

    Google Scholar 

  • Arlaud G J, Gaboriaud C, Thielens N M, Rossi V, Bersch B, Hernandez JF, Fontecilla-Camps JC (2001) Structural biology of C1: dissection of a complex molecular machinery. Immunol Rev 180:136–145

    Article  CAS  PubMed  Google Scholar 

  • Arlaud GJ, Gaboriaud C, Garnier G, Circolo A, Thielens N M, Budayova-Spano M, Fontecilla-Camps JC, Volanakis JE (2002) Structure, function and molecular genetics of human and murine C1r. Immunobiology 205:365–3682

    CAS  PubMed  Google Scholar 

  • Armbrust T, Schwogler S, Zohrens G, Ramadori G (1993) C1 esterase inhibitor gene expression in rat Kupffer cells, peritoneal macrophages and blood monocytes: modulation by interferon gamma. J Exp Med 178:373–380

    CAS  PubMed  Google Scholar 

  • Barnes AC, Horne MT, Ellis AE (1996) Effect of iron on expression of superoxide dismutase by Aeromonas salmonicida and associated resistance to superoxide anion. FEMS Microbiol Lett 142:19–26

    Article  CAS  Google Scholar 

  • Barnes AC, Bowden TJ, Horne MT, Ellis AE (1999) Peroxide-inducible catalase in Aeromonas salmonicida subsp. salmonicida protects against exogenous hydrogen peroxide and killing by activated rainbow trout, Oncorhynchus mykiss L., macrophages. Microb Pathog 26:149–158

    Article  CAS  PubMed  Google Scholar 

  • Bayne CJ, Gerwick L, Fujiki K, Nakao M, Yano T (2001) Immune-relevant (including acute phase) genes identified in the livers of rainbow trout, Oncorhynchus mykiss, by means of suppression subtractive hybridization. Dev Comp Immunol 25:205–217

    Article  CAS  PubMed  Google Scholar 

  • Belt KT, Carroll MC, Porter RR (1984) The structural basis of the multiple forms of human complement component C4. Cell 36:907–914

    CAS  PubMed  Google Scholar 

  • Blanchong CA, Chung EK, Rupert KL, Yang Y, Yang Z, Zhou B, Moulds JM, Yu CY(2001) Genetic, structural and functional diversities of human complement components C4A and C4B and their mouse homologues, Slp and C4. Int Immunopharmacol 1:365–392

    Article  CAS  PubMed  Google Scholar 

  • Bock SC, Skriver K, Nielsen E, Thogersen HC, Wiman B, Donaldson VH, Eddy RL, Marrinan J, Radziejewska E, Huber R, Shows TB, Magnusson S (1986) Human C1 inhibitor: primary structure, cDNA cloning, and chromosomal localization. Biochemistry 25:4292–4301

    CAS  PubMed  Google Scholar 

  • Bos IG, van Mierlo GJ, Bleeker WK, Rigter GM, te Velthuis H, Dickneite G, Hack CE (2001) The potentiation of human C1-inhibitor by dextran sulphate is transient in vivo: studies in a rat model. Int Immunopharmacol 1:1583–1595

    Article  CAS  PubMed  Google Scholar 

  • Bos IG, Hack CE, Abrahams JP (2002) Structural and functional aspects of C1-inhibitor. Immunobiology 205:518–533

    CAS  PubMed  Google Scholar 

  • Brownie J, Shawcross S, Theaker J, Whitcombe D, Ferrie R, Newton C, Little S (1997) The elimination of primer-dimer accumulation in PCR. Nucleic Acids Res. 25:3235–3241

    Google Scholar 

  • Chen CB, Wallis R (2002) Substrate recognition by zymogen and activated forms of mannose-binding protein-associated serine proteases. EMBL/GenBank/DDBJ databases, accession number: AY149995

  • Chen VC, Chao L, Chao J (2000) Roles of the P1, P2, and P3 residues in determining inhibitory specificity of kallistatin toward human tissue kallikrein. J Biol Chem 275:38457–38466

    Article  CAS  PubMed  Google Scholar 

  • Colten HR (1994) Immunology. Drawing a double-edged sword. Nature 371:474–475

    Article  CAS  PubMed  Google Scholar 

  • Colten HR, Strunk RC, Perlmutter DH, Cole FS (1986) Regulation of complement protein biosynthesis in mononuclear phagocytes. Ciba Found Symp 118:141–154

    CAS  PubMed  Google Scholar 

  • Coutinho M, Aulak KS, Davis AE 3rd (1994) Functional analysis of the serpin domain of C1 inhibitor. J Immunol 153:3648–3654

    CAS  PubMed  Google Scholar 

  • Davis AE III, Whitehead AS, Harrison RA, Dauphinais A, Bruns GAP, Cicardi M, Rosen FS (1986) Human inhibitor of the first component of complement, C1: characterization of cDNA clones and localization of the gene to chromosome 11. Proc Natl Acad Sci USA 83:3161–3165

    CAS  PubMed  Google Scholar 

  • Djie MZ, Stone SR, Le Bonniec BF (1997) Intrinsic specificity of the reactive site loop of alpha 1-antitrypsin, alpha 1-antichymotrypsin, antithrombin III, and protease nexin I. Biol Chem 272:16268–16273

    Article  CAS  Google Scholar 

  • Drouet C, Reboul A (1989) Biosynthesis of C1r and C1s subcomponents. Behring Inst Mitt 84:80–88

    CAS  PubMed  Google Scholar 

  • Endo Y, Takahashi M, Nakao M, Saiga H, Sekine H, Matsushita M, Nonaka M, Fujita T (2001) Two lineages of mannose-binding lectin-associated serine protease (MASP) in vertebrates. J Immunol 161:4924–4930

    Google Scholar 

  • Endo Y, Nonaka M, Saiga H, Kakinuma Y, Matsushita A, Takahashi M, Matsushita M, Fujita T (2003) Origin of mannose-binding lectin-associated serine protease (MASP)-1 and MASP-3 involved in the lectin complement pathway traced back to the invertebrate, amphioxus. J Immunol 170:4701–4707

    CAS  PubMed  Google Scholar 

  • Franchini S, Zarkadis IK, Sfyroera G, Sahu A, Moore W T, Mastellos D, LaPatra SE, Lambris JD (2001) Cloning and purification of the rainbow trout fifth component of complement (C5). Dev Comp Immunol 25:419–430

    Article  CAS  PubMed  Google Scholar 

  • Fujii T, Nakamura T, Tomonaga S (1995) Component C3 of hagfish complement has a unique structure: identification of native C3 and its degradation products. Mol Immunol 32:633–642

    Article  CAS  PubMed  Google Scholar 

  • Ganassin RC, Bols N (1998) Development of a monocyte/macrophage-like cell line, RTS11, from rainbow trout spleen. Fish Shellfish Immunol 8:457–476

    Article  Google Scholar 

  • Garnier G, Circolo A, Xu Y, Volanakis JE (2003) Complement C1r and C1s genes are duplicated in the mouse: differential expression generates alternative isomorphs in the liver and in the male reproductive system. Biochem J 371:631–640

    Article  CAS  PubMed  Google Scholar 

  • Hansen JE, Lund O, Rapacki K, Brunak S (1997) O-glycbase version 2.0 — a revised database of O-glycosylated proteins. Nucleic Acids Res 25:278–282

    Article  CAS  PubMed  Google Scholar 

  • He S, Yang JC, Tsang S, Sim RB, Whaley K (1997) Role of the distal hinge region of C1-inhibitor in the regulation of C1s activity. FEBS Lett 412:506–510

    Article  CAS  PubMed  Google Scholar 

  • Holland MC, Lambris JD (2002) The complement system in teleosts. Fish Shellfish Immunol 12:399–420

    Article  CAS  PubMed  Google Scholar 

  • Hughes AL (1994) Phylogeny of the C3/C4/C5 complement-component gene family indicates that C5 diverged first. Mol Biol Evol 11:417–25

    Google Scholar 

  • Inoue S, Nam BH, Hirono I, Aoki T (1997) A survey of expressed genes in Japanese flounder (Paralichthys olivaceus) liver and spleen. Mol Mar Biol Biotechnol 6:376–380

    CAS  PubMed  Google Scholar 

  • Isaac L, Aivazian D, Taniguchi-Sidle A, Ebanks RO, Farah CS, Florido MP, Pangburn MK, Isenman DE (1998) Native conformations of human complement components C3 and C4 show different dependencies on thioester formation. Biochem J 329:705–712

    CAS  PubMed  Google Scholar 

  • Jiang H, Wagner E, Zhang H, Frank MM (2001) Complement 1 inhibitor is a regulator of the alternative complement pathway. J Exp Med 194:1609–1616

    Article  CAS  PubMed  Google Scholar 

  • Kardos J, Gal P, Szilagyi L, Thielens N M, Szilagyi K, Lorincz Z, Kulcsar P, Graf L, Arlaud GJ, Zavodszky P (2001) The role of the individual domains in the structure and function of the catalytic region of a modular serine protease, C1r. J Immunol 167:5202–5208

    CAS  PubMed  Google Scholar 

  • Kato Y, Nakao M, Mutsuro J, Zarkadis I K, Yano T (2003) The complement component C5 of the common carp (Cyprinus carpio): cDNA cloning of two distinct isotypes that differ in a functional site. Immunogenetics 54:807–815

    CAS  PubMed  Google Scholar 

  • Kinoshita H, Sakiyama H, Tokunaga K, Imajoh-Ohmi S, Hamada Y, Isono K, Sakiyama S (1989) Complete primary structure of calcium-dependent serine proteinase capable of degrading extracellular matrix proteins. FEBS Lett 250:411–415

    Article  CAS  PubMed  Google Scholar 

  • Kuroda N, Naruse K, Shima A, Nonaka M, Sasaki M (2000) Molecular cloning and linkage analysis of complement C3 and C4 genes of the Japanese medaka fish. Immunogenetics 51:117–128

    PubMed  Google Scholar 

  • Lamark T, Ingebrigtsen M, Bjornstad C, Melkko T, Mollnes TE, Nielsen EW (2001) Expression of active human C1 inhibitor serpin domain in Escherichia coli. Protein Expr Purif 22:349–358

    Article  CAS  PubMed  Google Scholar 

  • Lener M, Vinci G, Duponchel C, Meo T, Tosi M (1998) Molecular cloning, gene structure and expression profile of mouse C1 inhibitor. Eur J Biochem 254:117–122

    Article  CAS  PubMed  Google Scholar 

  • Letunic I, Goodstadt L, Dickens NJ, Doerks T, Schultz J, Mott R, Ciccarelli F, Copley RR, Ponting CP, Bork P (2002) Recent improvements to the SMART domain-based sequence annotation resource. Nucleic Acids Res 30:242–244

    Article  CAS  PubMed  Google Scholar 

  • Leytus SP, Kurachi K, Sakariassen KS, Davie EW (1986) Nucleotide sequence of the cDNA coding for human complement C1r. Biochemistry 25:4855–4863

    CAS  PubMed  Google Scholar 

  • Matsushita M, Thiel S, Jensenius JC, Terai I, Fujita T (2000) Proteolytic activities of two types of mannose-binding lectin-associated serine protease. J Immunol 165:2637–2642

    CAS  PubMed  Google Scholar 

  • Matz M, Shagin D, Bogdanova E, Britanova O, Lukyanov S, Diatchenko L, Chenchik A (1999) Amplification of cDNA ends based on template-switching effect and step-out PCR. Nucleic Acids Res 27:1558–1560

    CAS  PubMed  Google Scholar 

  • McKinnon CM, Carter PE, Smyth SJ, Dunbar B, Fothergill JE (1987) Molecular cloning of cDNA for human complement component C1s. The complete amino acid sequence. Eur J Biochem 169:547–553

    PubMed  Google Scholar 

  • Minta J O, Aziz E (1981) Analysis of the reactive site peptide bond in C1-inhibitor by chemical modification of tyrosyl, lysyl, and arginyl residues: the essential role of lysyl residues in the functional activity of C1-INH. J Immunol 126:250–255

    CAS  PubMed  Google Scholar 

  • Mo R, Kato Y, Nonaka M, Nakayama K, Takahashi M (1996) Fourth component of Xenopus laevis complement: cDNA cloning and linkage analysis of the frog MHC. Immunogenetics 43:360–369

    Article  CAS  PubMed  Google Scholar 

  • Moon KE, Gorski JP, Hugli TE (1981) Complete primary structure of human C4a anaphylatoxin. J Biol Chem 256:8685–8692

    CAS  PubMed  Google Scholar 

  • Muldbjerg M, Markussen S, Magnusson S, Halkier T (1993) Bovine factor XIIa inhibitor. Blood Coagul Fibrinolysis 4:47–54

    CAS  PubMed  Google Scholar 

  • Mutsuro J, Nakao M, Fujiki K, Yano T (2000) Multiple forms of alpha2-macroglobulin from a bony fish, the common carp (Cyprinus carpio): striking sequence diversity in functional sites. Immunogenetics 51:847–855

    Article  CAS  PubMed  Google Scholar 

  • Nakao M, Mutsuro J, Obo R, Fujiki K, Nonaka M, Yano T (2000) Molecular cloning and protein analysis of divergent forms of the complement component C3 from a bony fish, the common carp (Cyprinus carpio): presence of variants lacking the catalytic histidine. Eur J Immunol 30:858–866

    Article  CAS  PubMed  Google Scholar 

  • Nakao M, Osaka K, Kato Y, Fujiki K, Yano T (2001) Molecular cloning of the complement (C1r/C1s/MASP2-like serine proteases from the common carp (Cyprinus carpio). Immunogenetics 52:255–63

    Article  CAS  PubMed  Google Scholar 

  • Nakao M, Matsumoto M, Nakazawa M, Fujiki K, Yano T (2002) Diversity of complement factor B/C2 in the common carp (Cyprinus carpio): three isotypes of B/C2-A expressed in different tissues. Dev Comp Immunol 26:533–541

    Article  CAS  PubMed  Google Scholar 

  • Needleman SB, Wunsch CD (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 48:443–453

    CAS  PubMed  Google Scholar 

  • Nielsen H, Engelbrecht J, Brunak S, von Heijne G (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10:1–6

    CAS  Google Scholar 

  • Nikoskelainen S, Lehtinen J, Lilius EM (2002) Bacteriolytic activity of rainbow trout (Oncorhynchus mykiss) complement. Dev Comp Immunol 26:797–804

    Article  CAS  PubMed  Google Scholar 

  • Nonaka M (2001) Evolution of the complement system. Curr Opin Immunol 13:69–73

    CAS  PubMed  Google Scholar 

  • Nonaka M, Natsuume-Sakai S, Takahashi M (1981) The complement system in rainbow trout (Salmo gairdneri). II. Purification and characterization of the fifth component (C5). J Immunol126:1495–1498

    Google Scholar 

  • Nonaka M, Nakayama K, Yeul YD, Takahashi M (1985) Complete nucleotide and derived amino acid sequences of the fourth component of mouse complement (C4). Evolutionary aspects. J Biol Chem 260:10936–10943

    CAS  PubMed  Google Scholar 

  • Patston PA, Schapira M (1997) Regulation of C1-inhibitor function by binding to type IV collagen and heparin. Biochem Biophys Res Commun 230:597–601

    Article  CAS  PubMed  Google Scholar 

  • Pearson WR, Lipman DI (1988) Improved tools for biological sequence comparison. Proc Natl Acad Sci USA 85:2444–2448

    CAS  PubMed  Google Scholar 

  • Reilly BD, Mold C (1997) Quantitative analysis of C4Ab and C4Bb binding to the C3b/C4b receptor (C R1, CD35). Clin Exp Immunol 110:310–316

    CAS  PubMed  Google Scholar 

  • Roitt I, Brostoff J, Male D (2001) Immunology, 6th edn. Harcourt, New York

  • Russell JA, Whaley K, Heaphy S (1997) The sequence of a cDNA encoding functional murine C1-inhibitor protein. Biochim Biophys Acta 1352:156–160

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sakai H, Nakashima S, Yoshimura S, Nishimura Y, Sakai N, Nozawa Y (1998) Molecular cloning of a cDNA encoding a serine protease homologous to complement Cls precursor from rat C6 glial cells and its expression during glial differentiation. Gene 209:87–94

    Article  CAS  PubMed  Google Scholar 

  • Salvesen GS, Catanese JJ, Kress LF, Travis J (1985) Primary structure of the reactive site of human C1-inhibitor. J Biol Chem 260:2432–2436

    CAS  PubMed  Google Scholar 

  • Sambrook JG, Campbell RD, Elgar G (2003) Characterisation of a gene cluster in Fugu rubripes containing the complement component C4 gene. Gene 312:73–83

    Article  CAS  PubMed  Google Scholar 

  • Samonte IE, Sato A, Mayer WE, Shintani S, Klein J. (2002) Linkage relationships of genes coding for alpha2-macroglobulin, C3 and C4 in the zebrafish: implications for the evolution of the complement and Mhc systems. Scand J Immunol 56:344–352

    Article  CAS  PubMed  Google Scholar 

  • Sato A, Sultmann H, Mayer WE, Figueroa F, Tichy H, Klein J (1999) cDNA sequence coding for the alpha′-chain of the third complement component in the African lungfish. Scand J Immunol 49:367–375

    Article  CAS  PubMed  Google Scholar 

  • Schultz J, Copley RR, Doerks T, Ponting CP Bork P (2000) SMART: a web-based tool for the study of genetically mobile domains Nucleic Acids Res 28:231–234

    Google Scholar 

  • Sepich DS, Noonan DJ, Ogata RT (1985) Complete cDNA sequence of the fourth component of murine complement. Proc Natl Acad Sci USA 82:5895–5899

    CAS  PubMed  Google Scholar 

  • Siebert PD, Chenchik A, Kellogg DE, Lukyanov KA, Lukyanov SA (1995) An improved PCR method for walking in uncloned genomic DNA. Nucleic Acids Res 23:1087–1088

    CAS  PubMed  Google Scholar 

  • Sim RB, Laich A (2000) Serine proteases of the complement system. Biochem Soc Trans 28:545–550

    CAS  PubMed  Google Scholar 

  • Smith LC, Chang L, Britten RJ, Davidson EH (1998) Sea urchin genes expressed in activated coelomocytes are identified by expressed sequence tags. Complement homologues and other putative immune response genes suggest immune system homology within the deuterostomes. J Immunol 1996 156:593–602

    Google Scholar 

  • Smith DK, Xue H (1997) Sequence profiles of immunoglobulin and immunoglobulin-like domains. J Mol Biol 274:530–545

    Article  CAS  PubMed  Google Scholar 

  • Sunyer JO, Tort L, Lambris JD (1997) Diversity of the third form of complement, C3, in fish: functional characterization of five forms of C3 in the diploid fish Sparus aurata. Biochem J 326:877–881

    CAS  PubMed  Google Scholar 

  • Sunyer JO, Zarkadis I, Sarrias MR, Hansen JD, Lambris JD (1998) Cloning, structure, and function of two rainbow trout Bf molecules. J Immunol 161:4106–4114

    CAS  PubMed  Google Scholar 

  • Tanaka N, Mutsuro J, Nakao M (2000) Carp complement component C4. EMBL/GenBank/DDBJ databases, accession number: AB037278, AB037279

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    PubMed  Google Scholar 

  • Van den Elsen JM, Martin A, Wong V, Clemenza L, Rose DR, Isenman DE (2002) X-ray crystal structure of the C4d fragment of human complement component C4. J Mol Biol 322:1103–1115

    Article  PubMed  Google Scholar 

  • Vincent F, de la Salle H, Bohbot A, Bergerat JP, Hauptmann G, Oberling F (1993) Synthesis and regulation of complement components by human monocytes/macrophages and by acute monocytic leukemia. DNA Cell Biol 12:415–423

    CAS  PubMed  Google Scholar 

  • Volanakis JE (1998) Transcriptional regulation of complement genes. Annu Rev Immunol 13:277–305

    Article  Google Scholar 

  • Wang T, Secombes CJ (2001) Cloning and expression of a putative common cytokine receptor gamma chain (gammaC) gene in rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol 11:233–244

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Ward M, Grabowski P, Secombes CJ (2001) Molecular cloning, gene organization and expression of rainbow trout (Oncorhynchus mykiss) inducible nitric oxide synthase (iNOS) gene. Biochem J 358:747–755

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Johnson N, Zou J, Bols N, Secombes CJ (2003) Sequencing and expression of the second allele of the interleukin-1β1 gene in rainbow trout (Oncorhynchus mykiss): identification of a novel SINE in the third intron. Fish Shellfish Immunol (in press)

  • York J D, Li P, Gardell SJ (1991) Combinatorial mutagenesis of the reactive site region in plasminogen activator inhibitor I. J Biol Chem 266:8495–8500

    CAS  PubMed  Google Scholar 

  • Zahedi R, MacFarlane RC, Wisnieski JJ, Davis AE 3rd. (2001) C1 inhibitor: analysis of the role of amino acid residues within the reactive center loop in target protease recognition. J Immunol 167:1500–1506

    CAS  PubMed  Google Scholar 

  • Zarkadis IK, Sarrias M R, Sfyroera G, Sunyer JO, Lambris JD (2001) Cloning and structure of three rainbow trout C3 molecules: a plausible explanation for their functional diversity. Dev Comp Immunol 25:11–24

    CAS  PubMed  Google Scholar 

  • Zhumabayeva B, Chenchik A, Siebert PD (1999) RecA-mediated affinity capture: a method for full-length cDNA cloning. Biotechniques 27:834–840

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a contract from the EC (Q5RS-2001-002211). Many thanks to Mrs. Linda Key (University of Aberdeen) for help with the sequencing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. Secombes.

Additional information

The nucleotide sequence data will appear in the EMBL/DDBJ/GenBank nucleotide sequence database under the following accession numbers: AJ519929 (trout C1r), AJ519930 (trout C1 inhibitor), AJ544262 (trout C4) and BN000290 (flounder C1 inhibitor)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, T., Secombes, C.J. Complete sequencing and expression of three complement components, C1r, C4 and C1 inhibitor, of the classical activation pathway of the complement system in rainbow trout Oncorhynchus mykiss . Immunogenetics 55, 615–628 (2003). https://doi.org/10.1007/s00251-003-0622-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-003-0622-5

Keywords

Navigation