Skip to main content

Advertisement

Log in

Low MHC variation in the endangered Galápagos penguin (Spheniscus mendiculus)

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

The major histocompatibility complex (MHC) is one of the most polymorphic regions of the genome, likely due to balancing selection acting to maintain alleles over time. Lack of MHC variability has been attributed to factors such as genetic drift in small populations and relaxed selection pressure. The Galápagos penguin (Spheniscus mendiculus), endemic to the Galápagos Islands, is the only penguin that occurs on the equator. It relies upon cold, nutrient-rich upwellings and experiences severe population declines when ocean temperatures rise during El Niño events. These bottlenecks, occurring in an already small population, have likely resulted in reduced genetic diversity in this species. In this study, we used MHC class II exon 2 sequence data from a DRB1-like gene to characterize the amount of genetic variation at the MHC in 30 Galápagos penguins, as well as one Magellanic penguin (S. magellanicus) and two king penguins (Aptenodytes patagonicus), and compared it to that in five other penguin species for which published data exist. We found that the Galápagos penguin had the lowest MHC diversity (as measured by number of polymorphic sites and average divergence among alleles) of the eight penguin species studied. A phylogenetic analysis showed that Galápagos penguin MHC sequences are most closely related to Humboldt penguin (Spheniscus humboldti) sequences, its putative sister species based on other loci. An excess of non-synonymous mutations and a pattern of trans-specific evolution in the neighbor-joining tree suggest that selection is acting on the penguin MHC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aguilar A, Roemer G, Debenham S, Binns M, Garcelon D, Wayne RK (2004) High MHC diversity maintained by balancing selection in an otherwise genetically monomorphic mammal. Proc Natl Acad Sci USA 101:3490–3494

    Article  PubMed  CAS  Google Scholar 

  • Aguilar A, Edwards SV, Smith TB, Wayne RK (2006) Patterns of variation in MHC class II β loci of the little greenbul (Andropadus virens) with comments on MHC evolution in birds. J Heredity 97:133–142

    Article  CAS  Google Scholar 

  • Akst EP, Boersma PD, Fleischer RC (2002) A comparison of genetic diversity between the Galápagos penguin and the Magellanic penguin. Conservation Genetics 3:375–383

    Article  CAS  Google Scholar 

  • Babik W, Durka W, Radwan J (2005) Sequence diversity of the MHC DRB gene in the Eurasian beaver (Castor fiber). Mol Ecol 14:4249–4257

    Article  PubMed  CAS  Google Scholar 

  • Baker AJ, Pereira SL, Haddrath OP, Edge KA (2006) Multiple gene evidence for expansion of extant penguins out of Antarctica due to global cooling. Proc R Soc Lond B Biol Sci 273:11–17

    Article  Google Scholar 

  • Bernatchez L, Landry C (2003) MHC studies in nonmodel vertebrates: what have we learned about natural selection in 15 years? J Evol Biol 16:363–377

    Article  PubMed  CAS  Google Scholar 

  • BirdLife International (2005) Spheniscus mendiculus. In: IUCN 2006. 2006 IUCN red list of threatened species (http://www.iucnredlist.org) downloaded on 21 January 2007

  • Boersma PD (1977) An ecological and behavioral study of the Galápagos Penguin. Living Bird 15:43–93

    Google Scholar 

  • Boersma PD (1978) Breeding patterns of Galápagos penguins as an indicator of oceanographic conditions. Science 200:1481–1483

    Article  CAS  PubMed  Google Scholar 

  • Boersma PD (1998) Population trends of the Galápagos penguin: impacts of El Niño and La Niña. Condor 100:245–253

    Article  Google Scholar 

  • Bonneaud C, Sorci G, Morin V, Westerdahl H, Zoorob R, Wittzell H (2004) Diversity of Mhc class I and IIB genes in house sparrows (Passer domesticus). Immunogenetics 55:855–865

    Article  PubMed  CAS  Google Scholar 

  • Brown JH, Jardetzky TS, Gorga JC, Stern LJ, Urban RG, Strominger JL, Wiley DC (1993) Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature 364:33–39

    Article  PubMed  CAS  Google Scholar 

  • Clarke JR, Kerry KR (1993) Diseases and parasites of penguins. Kor J Polar Res 4:79–96

    Google Scholar 

  • Clarke JR, Kerry KR (2000) Diseases and parasites of penguins. Penguin Conserv 13:5–24

    Google Scholar 

  • Cranfield MR, Beall FB, Skjoldager MT, Ialeggio DM (1991) Avian malaria. Spheniscus Penguin Newsletter 4:5–7

    Google Scholar 

  • Doherty PC, Zinkernagel RM (1975) Enhanced immunological surveillance in mice heterozygous at the H-2 gene complex. Nature 256:50–52

    Article  PubMed  CAS  Google Scholar 

  • Ekblom R, Grahn M, Höglund J (2003) Patterns of polymorphism in the MHC class II of a non-passerine bird, the great snipe (Gallinago media). Immunogenetics 54:734–741

    PubMed  CAS  Google Scholar 

  • Ellis S, Croxall JP, Cooper J (eds) (1998) Penguin conservation assessment and management plan. IUCN/SSC Conservation Breeding Specialist Group, Apple Valley, Minnesota

    Google Scholar 

  • Fix AS, Waterhouse C, Greiner EC, Stoskopf MK (1988) Plasmodium relictum as a cause of avian malaria in wild-caught Magellanic penguins (Spheniscus magellanicus). J Wildl Dis 24:610–619

    PubMed  CAS  Google Scholar 

  • Frankham R (1996) Relationship of genetic variation to population size in wildlife. Conserv Biol 10:1500–1508

    Article  Google Scholar 

  • Gandini P, Frere E, Boersma PD (1996) Status and conservation of Magellanic penguins Spheniscus magellanicus in Patagonia, Argentina. Bird Conserv Int 6:307–316

    Article  Google Scholar 

  • Garrigan D, Hedrick PW (2003) Detecting adaptive molecular polymorphism: lessons from the MHC. Evolution 57:1707–1722

    PubMed  CAS  Google Scholar 

  • Gaudieri S, Dawkins RL, Habara K, Kulski JK, Gojobori T (2000) SNP profile within the human major histocompatibility complex reveals an extreme interrupted level of nucleotide diversity. Genome Res 10:1579–1586

    Article  PubMed  CAS  Google Scholar 

  • Gilbert DA, Lehman N, O’Brien SJ, Wayne RK (1990) Genetic fingerprinting reflects population differentiation in the California Channel Island fox. Nature 344:764–767

    Article  PubMed  CAS  Google Scholar 

  • Goldstein DB, Roemer GW, Smith DA, Reich DE, Bergman A, Wayne RK (1999) The use of microsatellite variation to infer population structure and demographic history in a natural model system. Genetics 151:797–801

    PubMed  CAS  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hedrick P (2004) Foxy MHC selection story. Heredity 93:237–238

    Article  PubMed  CAS  Google Scholar 

  • Hedrick PW, Parker KM, Gutiérrez-Espeleta GA, Rattink A, Lievers K (2000) Major histocompatibility complex variation in the Arabian oryx. Evolution 54:2145–2151

    PubMed  CAS  Google Scholar 

  • Hess CM, Edwards SV (2002) The evolution of the major histocompatibility complex in birds. Bioscience 52:423–431

    Article  Google Scholar 

  • Hess CM, Gasper J, Hoekstra HE, Hill CE, Edwards SV (2000) MHC class II pseudogene and genomic signature of a 32-kb cosmid in the house finch (Carpodacus mexicanus). Genome Res 10:613–623

    Article  PubMed  CAS  Google Scholar 

  • Jansen R, Ledley FD (1990) Disruption of phase during PCR amplification and cloning of heterozygous target sequences. Nucleic Acids Res 18:5153–5156

    Article  PubMed  CAS  Google Scholar 

  • Jarvi SI, Tarr CL, McIntosh CE, Atkinson CT, Fleischer RC (2004) Natural selection of the major histocompatibility complex (Mhc) in Hawaiian honeycreepers (Drepanidinae). Mol Ecol 13:2157–2168

    Article  PubMed  CAS  Google Scholar 

  • Jones HI, Shellam GR (1999) The occurrence of blood-inhabiting protozoa in captive and free-living penguins. Polar Biol 21:5–10

    Article  Google Scholar 

  • Kaufman J, Milne S, Göbel TWF, Walker BA, Jacob JP, Auffray C, Zoorob R, Beck S (1999) The chicken B locus is a minimal-essential major histocompatibility complex. Nature 401:923–925

    Article  PubMed  CAS  Google Scholar 

  • Kikkawa EF, Tsuda TT, Naruse TK, Sumiyama D, Fukuda M, Kurita M, Murata K, Wilson RP, LeMaho Y, Tsuda M, Kulski JK, Inoko H (2005) Analysis of the sequence variations in the Mhc DRB1-like gene of the endangered Humboldt penguin (Spheniscus humboldti). Immunogenetics 57:99–107

    Article  PubMed  CAS  Google Scholar 

  • Klein J (1986) Natural history of the histocompatibility complex. Wiley, New York

    Google Scholar 

  • Klein J, Satta Y, Takahata N, O’hUigin C (1993) Trans-specific MHC polymorphism and the origin of species in primates. J Med Primatol 22:57–64

    PubMed  CAS  Google Scholar 

  • Knapp LA (2005) Denaturing gradient gel electrophoresis and its use in the detection of major histocompatibility complex polymorphism. Tissue Antigens 65:211–219

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245

    Article  PubMed  CAS  Google Scholar 

  • L’Abbe D, Belmaaza A, Decary F, Chartrand P (1992) Elimination of heteroduplex artifacts when sequencing HLA genes amplified by polymerase chain reaction (PCR). Immunogenetics 35:395–397

    Article  PubMed  CAS  Google Scholar 

  • Lehman N, Decker DJ, Stewart BS (2004) Divergent patterns of variation in major histocompatibility complex class II alleles among Antarctic phocid pinnipeds. J Mammal 85:1215–1224

    Article  Google Scholar 

  • Longeri M, Zanotti M, Damiani G (2002) Recombinant DRB sequences produced by mismatch repair of heteroduplexes during cloning in Escherichia coli. Eur J Immunogenet 29:517–523

    Article  PubMed  CAS  Google Scholar 

  • Luna-Jorquera G, Garthe S, Sepulveda FG, Weichler T, Vásquez JA (2000) Population size of Humboldt penguins assessed by combined terrestrial and at-sea counts. Waterbirds 23:506–510

    Google Scholar 

  • Merkel J, Jones HI, Whiteman NK, Gottdenker N, Vargas H, Travis EK, Miller RE, Parker PG (2007) Microfilariae in Galápagos penguins (Spheniscus mendiculus) and flightless cormorants (Phalacrocorax harrisi): genetics, morphology and prevalence. J Parasitol (in press)

  • Miller HC, Lambert DM (2004a) Gene duplication and gene conversion in class II MHC genes of New Zealand robins (Petroicidae). Immunogenetics 56:178–191

    PubMed  CAS  Google Scholar 

  • Miller HC, Lambert DM (2004b) Genetic drift outweighs balancing selection in shaping post-bottleneck major histocompatibility complex variation in New Zealand robins (Petroicidae). Mol Ecol 13:3709–3721

    Article  PubMed  CAS  Google Scholar 

  • Miller GD, Hofkin BV, Snell H, Hahn A, Miller RD (2001) Avian malaria and Marek’s disease: potential threats to Galapagos penguins Spheniscus mendiculus. Mar Ornithol 29:43–46

    Google Scholar 

  • Murray BW, White BN (1998) Sequence variation at the major histocompatibility complex DRB loci in beluga (Delphinapterus leucas) and narwhal (Monodon monoceros). Immunogenetics 48:242–252

    Article  PubMed  CAS  Google Scholar 

  • Nei M, Gojobori T (1986) Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3:418–426

    PubMed  CAS  Google Scholar 

  • Nei M, Maruyama T, Chakraborty R (1975) The bottleneck effect and genetic variability in populations. Evolution 29:1–10

    Article  Google Scholar 

  • Parham P, Ohta T (1996) Population biology of antigen presentation by MHC class I molecules. Science 272:67–74

    Article  PubMed  CAS  Google Scholar 

  • Parker PG, Whiteman NK, Miller RE (2006) Conservation medicine on the Galápagos Islands: partnerships among behavioral, population, and veterinary scientists. Auk 123:625–638

    Article  Google Scholar 

  • Penn DJ, Potts WK (1999) The evolution of mating preferences and major histocompatibility complex genes. Am Nat 153:145–164

    Article  Google Scholar 

  • Piertney SB, Oliver MK (2006) The evolutionary ecology of the major histocompatibility complex. Heredity 96:7–21

    PubMed  CAS  Google Scholar 

  • Richardson DS, Westerdahl H (2003) MHC diversity in two Acrocephalus species: the outbred great reed warbler and the inbred Seychelles warbler. Mol Ecol 12:3523–3529

    Article  PubMed  CAS  Google Scholar 

  • Riedinger MA, Steinitz-Kannan M, Last WM, Brenner M (2002) A ∼6100 14C yr record of El Niño activity from the Galápagos Islands. J Paleolimnol 27:1–7

    Article  Google Scholar 

  • Rozas J, Sánchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Seddon JM, Baverstock PR (1999) Variation on islands: major histocompatibility complex (Mhc) polymorphism in populations of the Australian bush rat. Mol Ecol 8:2071–2079

    Article  PubMed  CAS  Google Scholar 

  • Sheffield VC, Cox DR, Lerman LS, Myers RM (1989) Attachment of a 40-base-pair G+C-rich sequence (GC-clamp) to genomic DNA fragments by the polymerase chain reaction results in improved detection of single-base changes. Proc Natl Acad Sci USA 86:232–236

    Article  PubMed  CAS  Google Scholar 

  • Slade RW (1992) Limited MHC polymorphism in the southern elephant seal: implications for MHC evolution and marine mammal population biology. Proc R Soc Lond B Biol Sci 249:163–171

    Article  CAS  Google Scholar 

  • Takahata N (1990) A simple genealogical structure of strongly balanced allelic lines and trans-species evolution of polymorphism. Proc Natl Acad Sci USA 87:2419–2423

    Article  PubMed  CAS  Google Scholar 

  • Takahata N, Nei M (1990) Allelic genealogy under overdominant and frequency-dependent selection and polymorphism of major histocompatibility complex loci. Genetics 124:967–978

    PubMed  CAS  Google Scholar 

  • Travis EK, Vargas FH, Merkel J, Gottdenker N, Miller RE, Parker PG (2006) Hematology, serum chemistry, and serology of Galápagos penguins in the Galápagos Islands, Ecuador. J Wildl Dis 42:625–632

    PubMed  CAS  Google Scholar 

  • Trowsdale J, Groves V, Arnason A (1989) Limited MHC polymorphism in whales. Immunogenetics 29:19–24

    Article  PubMed  CAS  Google Scholar 

  • Tsuda TT, Tsuda M, Naruse T, Kawata H, Ando A, Shiina T, Fukuda M, Kurita M, LeMaho I, Kulski JK, Inoko H (2001) Phylogenetic analysis of penguin (Spheniscidae) species based on sequence variation in MHC class II genes. Immunogenetics 53:712–716

    Article  PubMed  CAS  Google Scholar 

  • Valle CA, Coulter MC (1987) Present status of the flightless cormorant, Galapagos penguin and greater flamingo populations in the Galapagos Islands, Ecuador, after the 1982–83 El Niño. Condor 89:276–281

    Article  Google Scholar 

  • Vargas H, Lougheed C, Snell H (2005a) Population size and trends of the Galápagos penguin Spheniscus mendiculus. Ibis 147:367–374

    Article  Google Scholar 

  • Vargas H, Steinfurth A, Larrea C, Jiménez G, Llerena W (2005b) Penguin and cormorant census 2005. Report to the Charles Darwin Research Station and the Galápagos National Park Service, Oxford

    Google Scholar 

  • Vargas FH, Harrison S, Rea S, Macdonald DW (2006) Biological effects of El Niño on the Galápagos penguin. Biol Conserv 127:107–114

    Article  Google Scholar 

  • Vincek V, O’hUigin C, Satta Y, Takahata N, Boag PT, Grant PR, Grant BR, Klein J (1997) How large was the founding population of Darwin’s finches? Proc R Soc Lond B Biol Sci 264:111–118

    Article  Google Scholar 

  • Westerdahl H, Wittzell H, von Schantz T, Bensch S (2004) MHC class I typing in a songbird with numerous loci and high polymorphism using motif-specific PCR and DGGE. Heredity 92:534–542

    Article  PubMed  CAS  Google Scholar 

  • Whiteman NK, Goodman SJ, Sinclair BJ, Walsh T, Cunningham AA, Kramer LD, Parker PG (2005) Establishment of the avian disease vector Culex quinquefasciatus Say, 1823 (Diptera: Culicidae) on the Galápagos Islands, Ecuador. Ibis 147:844–847

    Article  Google Scholar 

  • Wikelski M, Foufopoulos J, Vargas H, Snell H (2004) Galápagos birds and diseases: invasive pathogens as threats for island species. Ecol Soc 9:5, available online http://www.ecologyandsociety.org/vol9/iss1/art5

  • Wright S (1931) Evolution in Mendelian populations. Genetics 16:97–159

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the people who collected the samples used in this study: C. Duffie, N. Gottdenker, G. Jímenez Uzcátegui, J. Merkel, C. Larrea, and E. Travis. We would also like to thank the Galápagos National Park and the Charles Darwin Foundation for allowing us to do this work and for their support in the field. Michael Macek and Anne Tieber at the Saint Louis Zoo provided the Magellanic and king penguin samples. Funds for this project were provided by the Saint Louis Zoo Field Research for Conservation Program, the Des Lee Collaborative Vision in Zoological Research, D. Swarovski & Co., and the American Ornithologists’ Union. For help with the laboratory work, we are grateful to B. Nims, K. Matson, and especially K. Halbert.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer L. Bollmer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bollmer, J.L., Vargas, F.H. & Parker, P.G. Low MHC variation in the endangered Galápagos penguin (Spheniscus mendiculus). Immunogenetics 59, 593–602 (2007). https://doi.org/10.1007/s00251-007-0221-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-007-0221-y

Keywords

Navigation