Skip to main content
Log in

Model for fluorescence quenching in light harvesting complex II in different aggregation states

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Low-temperature (77 K) steady-state fluorescence emission spectroscopy and dynamic light scattering were applied to the main chlorophyll a/b protein light harvesting complex of photosystem II (LHC II) in different aggregation states to elucidate the mechanism of fluorescence quenching within LHC II oligomers. Evidences presented that LHC II oligomers are heterogeneous and consist of large and small particles with different fluorescence yield. At intermediate detergent concentrations the mean size of the small particles is similar to that of trimers, while the size of large particles is comparable to that of aggregated trimers without added detergent. It is suggested that in small particles and trimers the emitter is monomeric chlorophyll, whereas in large aggregates there is also another emitter, which is a poorly fluorescing chlorophyll associate. A model, describing populations of antenna chlorophyll molecules in small and large aggregates in their ground and first singlet excited states, is considered. The model enables us to obtain the ratio of the singlet excited-state lifetimes in small and large particles, the relative amount of chlorophyll molecules in large particles, and the amount of quenchers as a function of the degree of aggregation. These dependencies reveal that the quenching of the chl a fluorescence upon aggregation is due to the formation of large aggregates and the increasing of the amount of chlorophyll molecules forming these aggregates. As a consequence, the amount of quenchers, located in large aggregates, is increased, and their singlet excited-state lifetimes steeply decrease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

LHC II:

Main chlorophyll a/b protein light harvesting complex of photosystem II

chl:

Chlorophyll

NPQ:

Non-photochemical quenching

DM:

n-Dodecyl β-d-maltoside

CMC:

Critical micelle concentration

F680:

Fluorescence band at 680 nm

F700:

Fluorescence band at 698 nm

References

  • Andreeva A, Stoitchkova K, Busheva M, Apostolova E (2003) The energy distribution between chlorophyll-protein complexes of thylakoid membranes from pea mutants with modified pigment content I. Changes due to the modified pigment content. J Photochem Photobiol B 70:153–162. doi:10.1016/S1011-1344(03)00075-7

    Article  PubMed  CAS  Google Scholar 

  • Barzda V, Vengris M, Valkunas L, van Grondelle R, van Amerongen H (2000) Generation of fluorescence quenchers from the triplet states of chlorophyll in major light-harvesting complex II from green plants. Biochemistry 39:10468–10477. doi:10.1021/bi992826n

    Article  PubMed  CAS  Google Scholar 

  • Barzda V, Gulbians V, Kananavicius R, Cervinskas V, van Amerongen H, van Grondelle R et al (2001) Singlet–singlet annihilation kinetics in aggregates and trimers of LHCII. Biophys J 80:2409–2421

    Article  PubMed  CAS  Google Scholar 

  • Boardman NK, Thorne SW (1971) Sensitive fluorescence method for the determination of chlorophyll a/chlorophyll b ratios. Biochim Biophys Acta 46181:222–231

    Google Scholar 

  • Cseh Z, Rajagopal S, Tsonev T, Busheva M, Papp E, Garab G (2000) Thermooptic effect in chloroplast thylakoid membranes. Thermal and light stability of pigment arrays with different levels of structural complexity. Biochemistry 39:15250–15257. doi:10.1021/bi001600d

    Article  PubMed  CAS  Google Scholar 

  • Finazzi G, Johnson GN, Dall’Osto L, Joliot P, Wollman F-A, Bassi R (2004) A zeaxanthin-independent nonphotochemical quenching mechanism localized in the photosystem II core complex. Proc Natl Acad Sci USA 101:12375–12380. doi:10.1073/pnas.0404798101

    Article  PubMed  CAS  Google Scholar 

  • Gilmore AM, Hazlett T, Govindjee (1995) Xanthophyll cycle-dependent quenching of photosystem II chlorophyll a fluorescence: formation of a quenching complex with a short fluorescence lifetime. Proc Natl Acad Sci USA 92:2273–2277. doi:10.1073/pnas.92.6.2273

  • Grudziński W, Krupa Z, Garstka M, Maksymiec W, Swartz TE, Gruszecki WI (2002) Conformational rearrangements in light-harvesting complex II accompanying light-induced chlorophyll a fluorescence quenching. Biochim Biophys Acta 1554:108–117. doi:10.1016/S0005-2728(02)00218-9

    Article  PubMed  Google Scholar 

  • Gruszecki WI, Grudziński W, Gospodarek M, Patura M, Maksymiec W (2006) Xanthophyll-induced aggregation of LHCII as a switch between light-harvesting and energy dissipation systems. Biochim Biophys Acta 1757:1504–1511. doi:10.1016/j.bbabio.2006.08.002

    Article  PubMed  CAS  Google Scholar 

  • Hemerlrijk PW, Kwa LS, van Grondelle R, Dekker JP (1992) Spectroscopic properties of LHC-II, the main light-harvesting chlorophyll a/b protein complex from chloroplast membranes. Biochim Biophys Acta 1098:159–166. doi:10.1016/S0005-2728(05)80331-7

    Article  Google Scholar 

  • Holt NE, Zigmantas D, Valkunas L, Li XP, Niyogi KK, Fleming GR (2005) Carotenoid caution formation and the regulation of photosynthetic light harvesting. Science 307:433–436. doi:10.1126/science.1105833

    Article  PubMed  CAS  Google Scholar 

  • Horton P, Ruban A, Walters R (1996) Regulation of light harvesting in green plants. Annu Rev Plant Physiol Mol Biol 47:655–684. doi:10.1146/annurev.arplant.47.1.655

    Article  CAS  Google Scholar 

  • Horton P, Wentworth M, Ruban AV (2005) Control of the light harvesting function of chloroplast membranes: the LHCII-aggregation model for non-photochemical quenching. FEBS Lett 579:4201–4206. doi:10.1016/j.febslet.2005.07.003

    Article  PubMed  CAS  Google Scholar 

  • Huyer J, Eckert HJ, Irrgang KD, Miao J, Eichler HJ, Renger G (2004) Fluorescence decay kinetics of solubilized pigment protein complexes from the distal, proximal, and core antenna of Photosystem II in the range of 10–277 K and absence or presence of sucrose. J Phys Chem 108:3326–3334. doi:10.1021/jp030944l

    CAS  Google Scholar 

  • Jansson S (2005) A protein family saga: from photoprotection to light-harvesting (and back?). In: Demmig-Adams B et al (eds) Photoprotection, photoinhibition, gene regulation and environment, vol 21. Springer, Dordrecht, pp 145–153

    Chapter  Google Scholar 

  • Krause GH, Briantais JM, Vernotte C (1983) Characterization of chlorophyll fluorescence quenching in chloroplasts by fluorescence spectroscopy at 77 K. Biochim Biophys Acta 723:169–175. doi:10.1016/0005-2728(83)90116-0

    Article  CAS  Google Scholar 

  • Lampoura SS, Barzda V, Owen GM, Hoff AJ, van Amerongen H (2002) Aggregation of LCHII leads to a redistribution of the triplets over the central xanthophylls in LHCII. Biochem 41:9139–9144. doi:10.1021/bi025724x

    Article  CAS  Google Scholar 

  • Le Maire M, Champeil P, Moller JV (2000) Interaction of membrane proteins and lipids with solubilizing detergents. Biochim Biophys Acta 1508:86–111. doi:10.1016/S0304-4157(00)00010-1

    Article  PubMed  CAS  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: Pigments of photosynthetic membranes. In: Colowick SP, Kaplan NO, Packer L, Donce R (eds) Methods Enzymol, vol 148. Academic Press, pp 350–382

  • Liu Z, Yan H, Wang K, Kuang T, Zhang J, An X et al (2004) Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution. Nature 428:287–292. doi:10.1038/nature02373

    Article  PubMed  CAS  Google Scholar 

  • Mielczarski E, Mielczarski JA, Zhang L, Somasundaran P (2004) Structure of adsorbed n-dodecyl-β-d-maltoside layers on hematite. J Colloid Interface Sci 275:403–409. doi:10.1016/j.jcis.2004.02.083

    Article  PubMed  CAS  Google Scholar 

  • Moya I, Silvestri M, Vallon O, Cinque G, Bassi R (2001) Time-resolved fluorescence analysis of the Photosystem II antenna proteins in detergent micelles and liposomes. Biochemistry 40:12552–12561. doi:10.1021/bi010342x

    Article  PubMed  CAS  Google Scholar 

  • Mullineaux CW, Pascal AA, Horton P, Holzwarth AR (1993) Excitation-energy quenching in aggregates of the LHC II chlorophyll-protein complex: a time-resolved fluorescence study. Biochim Biophys Acta 1141:23–28. doi:10.1016/0005-2728(93)90184-H

    Article  CAS  Google Scholar 

  • Naqvi KR, Melo TB, Raju BB, Javorfi T, Simidjiev I, Garab G (1997) Quenching of chlorophyll a singlets and triplets by carotenoids in light-harvesting complex of photosystem II: comparison of aggregates with trimers. Spectrochim Acta Part A Mol Biomol Spectrosc 53:2659–2667. doi:10.1016/S1386-1425(97)00160-1

    Article  Google Scholar 

  • Palacios MA, De Weerd FL, Ihalainen JA, van Grondelle R, van Amerongen H (2002) Superradiance and exciton (De)localization in light-harvesting complex II from green plants? J Phys Chem 106:5782–5787. doi:10.1021/jp014078t

    CAS  Google Scholar 

  • Pascal AA, Liu Z, Broess K, Van Oort B, van Amerongen H, Wang C et al (2005) Molecular basis of photoprotection and control of photosynthetic light-harvesting. Nature 436:134–137. doi:10.1038/nature03795

    Article  PubMed  CAS  Google Scholar 

  • Peterman EJG, Dekker JP, van Grondelle R, van Amerongen H, Nussberger S (1994) Wavelength-selected polarized fluorescence of monomeric, trimeric, and aggregated light-harvesting complex II of green plants. Lithuan J Phys 34:301–306

    CAS  Google Scholar 

  • Ruban AV, Horton P (1992) Mechanism of ΔpH-dependent dissipation of absorbed excitation energy by photosynthetic membranes. I. Spectroscopic analysis of isolated light-harvesting compexes. Biochim Biophys Acta 1102:30–38. doi:10.1016/0005-2728(92)90061-6

    Article  CAS  Google Scholar 

  • Ruban AV, Calkoen F, Kwa SLS, van Grondelle R, Horton P, Dekker JP (1997) Characterization of LHCII in the aggregated state by linear and circular dichroism spectroscopy. Biochim Biophys Acta 1321:61–70. doi:10.1016/S0005-2728(97)00047-9

    Article  CAS  Google Scholar 

  • Ruban AV, Pascal AA, Robert B, Horton P (2001) Configuration and dynamics of xanthophylls in light harvesting antennae of higher plants. J Biol Chem 276:24862–24870. doi:10.1074/jbc.M103263200

    Article  PubMed  CAS  Google Scholar 

  • Shipman LL, Cotton TM, Norris JR, Katz JJ (1976) An analysis of the visible absorption spectrum of chlorophyll a monomer, dimer, and oligomers. Am J Chem Soc 98:8222–8230. doi:10.1021/ja00441a056

    Article  CAS  Google Scholar 

  • Simidjiev I, Barsda V, Mustardy L, Garab G (1997) Isolation of lamellar aggregates of the light-harvesting chlorophyll a/b protein complex of photosystem II with long-range chiral order and structural flexibility. Anal Biochem 250:169–175. doi:10.1006/abio.1997.2204

    Article  PubMed  CAS  Google Scholar 

  • Standfuss J, van Scheltinga ACT, Lamborghini M, Kühlbrandt W (2005) Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5 Å resolution. EMBO J 24:919–928. doi:10.1038/sj.emboj.7600585

    Article  PubMed  CAS  Google Scholar 

  • Van Amerongen H, van Grondelle R (2001) Understanding the energy transfer function of LHCII, the major light-harvesting complex of green plants. J Phys Chem B 105:604–617. doi:10.1021/jp0028406

    Article  CAS  Google Scholar 

  • Van Ghatty PA, Carri G (2007) Dynamics of lysosyme in a glycerol-water system. 2007 American Physical Society March Meeting, Denver, Colorado

  • Van Grondelle R, Dekker JP, Gillbro T, Sundström V (1994) Energy transfer and trapping in photosynthesis. Biochim Biophys Acta 1187:1–65. doi:10.1016/0005-2728(94)90166-X

    Article  CAS  Google Scholar 

  • Van Oort B, van Hoek A, Ruban AV, van Amerongen H (2007a) Equilibrium between quenched and nonquenched conformations of the major plant light-harvesting complex studied with high-pressure time-resolved fluorescence. J Phys Chem B 111:7631–7637. doi:10.1021/jp070573z

    Article  PubMed  CAS  Google Scholar 

  • Van Oort B, van Hoek A, Ruban AV, van Amerongen H (2007b) Aggregation of Light-Harvesting Complex II leads to formation of efficient excitation energy traps in monomeric and trimeric complexes. FEBS Lett 581:3528–3532. doi:10.1016/j.febslet.2007.06.070

    Article  PubMed  CAS  Google Scholar 

  • Vasil’ev S, Irrgang KD, Schotter T, Bergmann A, Eishler HJ, Renger G (1997) Quenching of chlorophyll a fluorescence in the aggregates of LHCII: steady state fluorescence and picosecond relaxation kinetics. Biochemistry 36:7503–7512. doi:10.1021/bi9625253

    Article  PubMed  CAS  Google Scholar 

  • Wentworth A, Ruban V, Horton P (2003) Thermodynamic investigation into the mechanism of the chlorophyll fluorescence quenching in isolated Photosystem II light harvesting complexes. J Biol Chem 278:21845–21850. doi:10.1074/jbc.M302586200

    Article  PubMed  CAS  Google Scholar 

  • Yan H, Zhang P, Wang C, Liu Z, Chang W (2007) Two lutein molecules in LHCII have different conformations and functions: insights into the molecular mechanism of thermal dissipation in plants. Biochem Biophys Res Commun 355:457–463. doi:10.1016/j.bbrc.2007.01.172

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Grant No. 11 (Program “Support for the research activities at the universities”) from the Scientific Research Fund of the Ministry of Education and Science of Bulgaria and by Grant No. 16 from the Scientific Research Foundation at Sofia University, Bulgaria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atanaska Andreeva.

Appendices

Appendix 1: Estimation of the ratio of the rate constants for excitation energy transfer from F680 to F700

It is well documented that the process of excitation energy transfer between the antenna pigments in green plants can be described with the localized Förster mechanism (Van Grondelle et al. 1994; Palacios et al. 2002) and the rate constant for excitation energy transfer is proportional to the minus sixth power of the distance between pigments:

$$ k_{12} = {\text{const}}\;n^{ - 4} \,k^{2} \,R^{ - 6} , $$
(5)

where n is the refraction index, k is the factor for orientation of the molecules and R is the distance between them. It was shown that the average distance between the pigments in trimeric LHC II is 11. 26 Å (Standfuss et al. 2005; Liu et al. 2004), whereas the distance between F680 and F700 is around 14 Å (Standfuss et al. 2005); (Standfuss et al. 2005; Liu et al. 2004). Using Eq. 5 it is easy to calculate that the ratio of the rate constant for energy transfer between F680 and F700 to the average rate constant is 0.14, which enables us to neglect it in a first approximation.

Appendix 2: Evaluation of the rate constant for fluorescence

The rate constant for fluorescence k F is given by:

$$ k_{\text{F}} = \frac{1}{{\tau_{R} }} \approx {\text{const}}\tilde{\nu }_{0}^{2} \,\varepsilon_{\max } \,\Updelta \tilde{\nu }, $$
(6)

where τ R is the chl a fluorescence lifetime, \( \tilde{\nu } \) is the frequency in wavenumbers, \( \Updelta \tilde{\nu } \) is the full width at half maximum, \( \tilde{\nu }_{0} \) is the wavenumber at the absorption maximum and ε max is the extinction coefficient at \( \tilde{\nu }_{0} \). On the basis of the literature data (Shipman et al. 1976) about the values of \( \tilde{\nu }_{0} \) = 15,170 cm−1, \( \Updelta \tilde{\nu } \) = 440 cm−1 and ε max = 84.9 for monomeric chl a and 14,940 cm−1, 720 cm−1 and 55.7, respectively for dimeric chl a, the ratio of their fluorescence rate constants is estimated to be 0.96. Therefore, it is safe to assume that k F is the same for chl monomers and chl dimers.

Appendix 3: Differential equations describing the chl a fluorescence quenching within LHC II with different degree of aggregation at low temperature (77 K)

The model (Fig. 5) leads to the following five differential equations:

$$ \frac{{{\text{d}}n_{{1{\text{T}}}} }}{{{\text{d}}t}} = {{\sigma \;n_{{0{\text{T}}}} I - k_{12} n_{{02{\text{T}}}} n_{{1{\text{T}}}} } \mathord{\left/ {\vphantom {{\sigma \;n_{{0{\text{T}}}} I - k_{12} n_{{02{\text{T}}}} n_{{1{\text{T}}}} } {N_{0} }}} \right. \kern-\nulldelimiterspace} {N_{0} }} $$
(7)
$$ \frac{{{\text{d}}n_{{2{\text{T}}}} }}{{{\text{d}}t}} = {{k_{12} n_{{02{\text{T}}}} n_{{1{\text{T}}}} } \mathord{\left/ {\vphantom {{k_{12} n_{{02{\text{T}}}} n_{{1{\text{T}}}} } {N_{0} - \left( {k_{\text{F}} + k_{\text{ic}}^{\text{M}} } \right)n_{{2{\text{T}}}} }}} \right. \kern-\nulldelimiterspace} {N_{0} - \left( {k_{\text{F}} + k_{\text{ic}}^{\text{M}} } \right)n_{{2{\text{T}}}} }} $$
(8)
$$ \frac{{{\text{d}}n_{{1{\text{A}}}} }}{{{\text{d}}t}} = {{{{\sigma \;n_{{0{\text{A}}}} I\; - k_{13} n_{03} n_{{1{\text{A}}}} } \mathord{\left/ {\vphantom {{\sigma \;n_{{0{\text{A}}}} I\; - k_{13} n_{03} n_{{1{\text{A}}}} } {N_{0} }}} \right. \kern-\nulldelimiterspace} {N_{0} }} - k_{12} n_{{02{\text{A}}}} n_{{1{\text{A}}}} } \mathord{\left/ {\vphantom {{{{\sigma \;n_{{0{\text{A}}}} I\; - k_{13} n_{03} n_{{1{\text{A}}}} } \mathord{\left/ {\vphantom {{\sigma \;n_{{0{\text{A}}}} I\; - k_{13} n_{03} n_{{1{\text{A}}}} } {N_{0} }}} \right. \kern-\nulldelimiterspace} {N_{0} }} - k_{12} n_{{02{\text{A}}}} n_{{1{\text{A}}}} } {N_{0} }}} \right. \kern-\nulldelimiterspace} {N_{0} }} $$
(9)
$$ \frac{{{\text{d}}n_{3} }}{{{\text{d}}t}} = {{k_{13} n_{03} n_{{1{\text{A}}}} } \mathord{\left/ {\vphantom {{k_{13} n_{03} n_{{1{\text{A}}}} } {N_{0} - \left( {k{}_{\text{F}} + k_{\text{ic}}^{\text{D}} } \right)n_{3} }}} \right. \kern-\nulldelimiterspace} {N_{0} - \left( {k{}_{\text{F}} + k_{\text{ic}}^{\text{D}} } \right)n_{3} }} $$
(10)
$$ \frac{{{\text{d}}n_{{2{\text{A}}}} }}{{{\text{d}}t}} = {{k_{12} n_{{02{\text{A}}}} n_{{1{\text{A}}}} } \mathord{\left/ {\vphantom {{k_{12} n_{{02{\text{A}}}} n_{{1{\text{A}}}} } {N_{o} - \left( {k_{\text{F}} + k_{\text{ic}}^{\text{M}} } \right)n_{{2{\text{A}}}} ,}}} \right. \kern-\nulldelimiterspace} {N_{o} - \left( {k_{\text{F}} + k_{\text{ic}}^{\text{M}} } \right)n_{{2{\text{A}}}} ,}} $$
(11)

where I is the intensity of excitation light and k ic is the rate constant for internal conversion.

In steady state \( \frac{{{\text{d}}n_{i} }}{{{\text{d}}t}} = 0 \) and the Eqs. 711 become:

$$ \sigma \;n_{{0{\text{T}}}} I\; = {{k_{12} n_{{02{\text{T}}}} n_{{1{\text{T}}}} } \mathord{\left/ {\vphantom {{k_{12} n_{{02{\text{T}}}} n_{{1{\text{T}}}} } {N_{0} }}} \right. \kern-\nulldelimiterspace} {N_{0} }} $$
(7')
$$ {{k_{12} n_{{02{\text{T}}}} n_{{1{\text{T}}}} } \mathord{\left/ {\vphantom {{k_{12} n_{{02{\text{T}}}} n_{{1{\text{T}}}} } {N_{0} = \left( {k_{\text{F}} + k_{\text{ic}}^{\text{M}} } \right)n_{{2{\text{T}}}} }}} \right. \kern-\nulldelimiterspace} {N_{0} = \left( {k_{\text{F}} + k_{\text{ic}}^{\text{M}} } \right)n_{{2{\text{T}}}} }} $$
(8')
$$ {{{{\sigma \;n_{{0{\text{A}}}} I = k_{13} n_{03} n_{{1{\text{A}}}} } \mathord{\left/ {\vphantom {{\sigma \;n_{{0{\text{A}}}} I = k_{13} n_{03} n_{{1{\text{A}}}} } {N_{0} + k_{12} n_{{02{\text{A}}}} n_{{1{\text{A}}}} }}} \right. \kern-\nulldelimiterspace} {N_{0} + k_{12} n_{{02{\text{A}}}} n_{{1{\text{A}}}} }}} \mathord{\left/ {\vphantom {{{{\sigma \;n_{{0{\text{A}}}} I = k_{13} n_{03} n_{{1{\text{A}}}} } \mathord{\left/ {\vphantom {{\sigma \;n_{{0{\text{A}}}} I = k_{13} n_{03} n_{{1{\text{A}}}} } {N_{0} + k_{12} n_{{02{\text{A}}}} n_{{1{\text{A}}}} }}} \right. \kern-\nulldelimiterspace} {N_{0} + k_{12} n_{{02{\text{A}}}} n_{{1{\text{A}}}} }}} {N_{0} }}} \right. \kern-\nulldelimiterspace} {N_{0} }} $$
(9')
$$ {{k_{13} n_{03} n_{{1{\text{A}}}} } \mathord{\left/ {\vphantom {{k_{13} n_{03} n_{{1{\text{A}}}} } {N_{0} = \left( {k{}_{\text{F}} + k_{\text{ic}}^{\text{D}} } \right)n_{3} }}} \right. \kern-\nulldelimiterspace} {N_{0} = \left( {k{}_{\text{F}} + k_{\text{ic}}^{\text{D}} } \right)n_{3} }} $$
(10')
$$ {{k_{12} n_{{02{\text{A}}}} n_{{1{\text{A}}}} } \mathord{\left/ {\vphantom {{k_{12} n_{{02{\text{A}}}} n_{{1{\text{A}}}} } {N_{0} = \left( {k_{\text{F}} + k_{\text{ic}}^{\text{M}} } \right)n_{{2{\text{A}}}} }}} \right. \kern-\nulldelimiterspace} {N_{0} = \left( {k_{\text{F}} + k_{\text{ic}}^{\text{M}} } \right)n_{{2{\text{A}}}} }} $$
(11')

At CMC, when all LHCs form trimers and n 0T  = 1, the energy pathways are only realized via scheme shown in Fig. 5a. Therefore, the fluorescence is emitted only by F680. Its integrated fluorescence is denoted as \( n_{{2{\text{T}}}}^{\text{T}} \), where superscript T means that all LHC II form trimers. Its value is easy to obtain from Eqs. 1′ and 7′:

$$ n_{{2{\text{T}}}}^{\text{T}} = \sigma I\tau_{2} ,\quad {\text{where }}\tau_{2} = \frac{1}{{k_{\text{F}} + k_{\text{ic}}^{\text{M}} }}. $$
(12)

At intermediate DM concentrations, the total fluorescence emitted from F680 can be expressed as follows:

$$ n_{2} = n_{{2{\text{T}}}} + n_{{2{\text{A}}}} $$
(13)

Appendix 4: Equation for n 0A

The quadratic equation for the relative amount of chl molecules in their ground states in large aggregates, n 0A, obtained after the replaces using Eqs. 1′, 7′11′ and Eqs. 24 is:

$$ \frac{{n_{{2{\text{T}}}}^{\text{T}} }}{{\tau_{2} }}n_{{0{\text{A}}}}^{2} + \left( {\frac{{n_{2} }}{{\tau_{2} }} - \frac{{2n_{{2{\text{T}}}}^{\text{T}} }}{{\tau_{2} }}} \right)n_{{0{\text{A}}}} + \frac{{n_{3} }}{{\tau_{3} }} = 0 $$
(14)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andreeva, A., Abarova, S., Stoitchkova, K. et al. Model for fluorescence quenching in light harvesting complex II in different aggregation states. Eur Biophys J 38, 199–208 (2009). https://doi.org/10.1007/s00249-008-0370-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-008-0370-4

Keywords

Navigation