Skip to main content

Carotenoids and Photosynthesis

  • Chapter
  • First Online:
Carotenoids in Nature

Part of the book series: Subcellular Biochemistry ((SCBI,volume 79))

Abstract

Carotenoids are ubiquitous and essential pigments in photosynthesis. They absorb in the blue-green region of the solar spectrum and transfer the absorbed energy to (bacterio-)chlorophylls, and so expand the wavelength range of light that is able to drive photosynthesis. This is an example of singlet–singlet energy transfer, and so carotenoids serve to enhance the overall efficiency of photosynthetic light reactions. Carotenoids also act to protect photosynthetic organisms from the harmful effects of excess exposure to light. Triplet–triplet energy transfer from chlorophylls to carotenoids plays a key role in this photoprotective reaction. In the light-harvesting pigment–protein complexes from purple photosynthetic bacteria and chlorophytes, carotenoids have an additional role of structural stabilization of those complexes. In this article we review what is currently known about how carotenoids discharge these functions. The molecular architecture of photosynthetic systems will be outlined first to provide a basis from which to describe carotenoid photochemistry, which underlies most of their important functions in photosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aartsma TJ, Matysik J (2008) Biophysical techniques in photosynthesis volume II, vol 26, Advances in photosynthesis and respiration. Springer, Dordrecht

    Book  Google Scholar 

  • Andersson PO, Gillbro T (1995) Photophysics and dynamics of the lowest excited singlet state in long substituted polyenes with implications to the very long-chain limit. J Chem Phys 103(7):2509–2519

    Article  CAS  Google Scholar 

  • Arnlund D, Johansson LC, Wickstrand C, Barty A, Williams GJ, Malmerberg E, Davidsson J, Milathianaki D, DePonte DP, Shoeman RL, Wang D, James D, Katona G, Westenhoff S, White TA, Aquila A, Bari S, Berntsen P, Bogan M, van Driel TB, Doak RB, Kjaer KS, Frank M, Fromme R, Grotjohann I, Henning R, Hunter MS, Kirian RA, Kosheleva I, Kupitz C, Liang M, Martin AV, Nielsen MM, Messerschmidt M, Seibert MM, Sjohamn J, Stellato F, Weierstall U, Zatsepin NA, Spence JC, Fromme P, Schlichting I, Boutet S, Groenhof G, Chapman HN, Neutze R (2014) Visualizing a protein quake with time-resolved X-ray scattering at a free-electron laser. Nat Methods 11(9):923–926. doi:10.1038/nmeth.3067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bautista JA, Connors RE, Raju BB, Hiller RG, Sharples FP, Gosztola D, Wasielewski MR, Frank HA (1999) Excited state properties of peridinin: observation of a solvent dependence of the lowest excited singlet state lifetime and spectral behavior unique among carotenoids. J Phys Chem B 103(41):8751–8758

    Article  CAS  Google Scholar 

  • Behrens C, Decker FJ, Ding Y, Dolgashev VA, Frisch J, Huang Z, Krejcik P, Loos H, Lutman A, Maxwell TJ, Turner J, Wang J, Wang MH, Welch J, Wu J (2014) Few-femtosecond time-resolved measurements of X-ray free-electron lasers. Nat Commun 5:3762. doi:10.1038/ncomms4762

    Article  CAS  PubMed  Google Scholar 

  • Benning MM, Wesenberg G, Caffrey MS, Bartsch RG, Meyer TE, Cusanovich MA, Rayment I, Holden HM (1991) Molecular structure of cytochrome c 2 isolated from Rhodobacter capsulatus determined at 2.5 Å resolution. J Mol Biol 220:673–685

    Article  CAS  PubMed  Google Scholar 

  • Billsten HH, Zigmantas D, Sundström V, Polívka T (2002) Dynamics of vibrational relaxation in the S1 state of carotenoids having 11 conjugated C = C bonds. Chem Phys Lett 355 (5,6):465–470

    Google Scholar 

  • Blankenship RE, Madigan MT, Bauer CE (1995) Anoxygenic photosynthetic bacteria. Advances in photosynthesis, vol 2. Kluwer Academic Publisher, Dordrecht/Boston/London

    Google Scholar 

  • Britton G, Liaaen-Jensen S, Pfander H (1998) Carotenoids, vol. 3: biosynthesis and metabolism. Birkhäuser, Basel/Boston/Berlin

    Google Scholar 

  • Cerullo G, Polli D, Lanzani G, De Silvestri S, Hashimoto H, Cogdell RJ (2002) Photosynthetic light harvesting by carotenoids: detection of an intermediate excited state. Science 298(5602):2395–2398

    Article  CAS  PubMed  Google Scholar 

  • Challa JR, Du Y, McCamant DW (2012) Femtosecond stimulated raman spectroscopy using a scanning multichannel technique. Appl Spectrosc 66(2):227–232. doi:10.1366/11-06457

    Article  CAS  PubMed  Google Scholar 

  • Cho M (2008) Coherent two-dimensional optical spectroscopy. Chem Rev 108(4):1331–1418. doi:10.1021/cr078377b

    Article  CAS  PubMed  Google Scholar 

  • Cho M (2009) Two-dimensional optical spectroscopy. CRC Press, Boca Raton

    Book  Google Scholar 

  • Clayton RK (1980) Photosynthesis: physical mechanisms and chemical patterns. Cambridge University Press, Cambridge

    Google Scholar 

  • Deisenhofer J, Epp O, Miki K, Hüber R, Michel H (1985) Structure of the protein subunits in the photosynthetic reaction center of Rhodopseudomonas viridis at 3Å resolution. Nature 318(6047):618–624

    Article  CAS  PubMed  Google Scholar 

  • Demmig-Adams B, Garab G, Adams W III, Govindjee UI (2014) Non-photochemical quenching and energy dissipation in plants, algae and cyanobacteria, vol 40, Advances in photosynthesis and respiration. Springer, Berlin

    Google Scholar 

  • Duke SO (1990) Overview of herbicide mechanisms of action. Environ Health Perspect 87:263–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fenna RE, Matthews BW (1975) Chlorophyll arrangement in a bacteriochlorophyll protein from Chlorobium limicola. Nature 258(5536):573–577. doi:10.1038/258573a0

    Article  CAS  Google Scholar 

  • Frank HA (1999) Incorporation of carotennoids into reaction center and light-harvesting pigment-protein complexes. In: Frank HA, Young AJ, Britton G, Cogdell RJ (eds) The photochemistry of carotenoids, vol 8, Advances in photosynthesis. Kluwer Academic Publisher, Dordrecht/Boston/London, pp 235–244

    Chapter  Google Scholar 

  • Frank HA (2001) Spectrosocpic studies of the Low-lying singlet excited electronic states and photochemical properties of carotenoids. Arch Biochem Biophys 385(1):53–60

    Article  CAS  PubMed  Google Scholar 

  • Frank HA, Bautista JA, Josue J, Pendon Z, Hiller RG, Sharples FP, Gosztola D, Wasielewski MR (2000) Effect of the solvent environment on the spectroscopic properties and dynamics of the lowest excited states of carotenoids. J Phys Chem B 104(18):4569–4577

    Article  CAS  Google Scholar 

  • Frank HA, Brudvig GW (2004) Redox functions of carotenoids in photosynthesis. Biochemistry 43(27):8607–8615

    Article  CAS  PubMed  Google Scholar 

  • Frank HA, Cogdell RJ (1996) Carotenoids in photosynthesis. Photochem Photobiol 63(3):257–264. doi:10.1111/j.1751-1097.1996.tb03022.x

    Article  CAS  PubMed  Google Scholar 

  • Frank HA, Young AJ, Britton G, Cogdell RJ (1999) The photochemistry of carotenoids. In: Govindjee (ed) Advances in photosynthesis, vol 8. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Fraser NJ, Hashimoto H, Cogdell RJ (2001) Carotenoids and bacterial photosynthesis: the story so far. Photosynth Res 70(3):249–256

    Article  CAS  PubMed  Google Scholar 

  • Fromme P (2008) Photosynthetic protein complexes; a structural approach. Wiley-Blackwell, Weinheim

    Book  Google Scholar 

  • Fromme P, Jordan P, Krauss N (2001) Structure of photosystem I. Biochim Et Biophys Acta-Bioenerg 1507(1-3):5–31

    Article  CAS  Google Scholar 

  • Frontiera RR, Mathies RA (2011) Femtosecond stimulated Raman spectroscopy. Laser Photonics Rev 5(1):102–113. doi:10.1002/lpor.200900048

    Article  CAS  Google Scholar 

  • Ghosh R, Hauser H, Bachofen R (1988) Reversible dissociation of the B873 light-harvesting complex from Rhodospirillum rubrum G9+. Biochemistry 27(3):1004–1014

    Article  CAS  Google Scholar 

  • Gradinaru CC, Kennis JT, Papagiannakis E, van Stokkum IH, Cogdell RJ, Fleming GR, Niederman RA, van Grondelle R (2001) An unusual pathway of excitation energy deactivation in carotenoids: singlet-to-triplet conversion on an ultrafast timescale in a photosynthetic antenna. Proc Natl Acad Sci U S A 98(5):2364–2369. doi:10.1073/pnas.051501298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Green BR, Parson WW (2003) Light-harvesting antennas in photosynthesis, vol 13, Advances in photosynthesis and respiration. Kluwer Academic Publishers, Dordrecht/Boston/London

    Google Scholar 

  • Harada J, Nagashima KVP, Takaichi S, Misawa N, Matsuura K, Shimada K (2001) Phytoene desaturase, CrtI, of the purple photosynthetic bactrium, Rubrivivax gelatinosus, produces both neurosporene and lycopene. Plant Cell Physiol 42(10):1112–1118

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto H, Sugisaki M, Yoshizawa M (2015) Ultrafast time-resolved vibrational spectroscopies of carotenoids in photosynthesis. Biochim Biophys Acta Bioenerg 1847:69–78. doi:10.1016/j.bbabio.2014.09.001

    Article  CAS  Google Scholar 

  • Hashimoto H, Yanagi K, Yoshizawa M, Polli D, Cerullo G, Lanzani G, De Silvestri S, Gardiner AT, Cogdell RJ (2004) The very early events following photoexcitation of carotenoids. Arch Biochem Biophys 430(1):61–69

    Article  CAS  PubMed  Google Scholar 

  • Hirata K, Shinzawa-Itoh K, Yano N, Takemura S, Kato K, Hatanaka M, Muramoto K, Kawahara T, Tsukihara T, Yamashita E, Tono K, Ueno G, Hikima T, Murakami H, Inubushi Y, Yabashi M, Ishikawa T, Yamamoto M, Ogura T, Sugimoto H, Shen JR, Yoshikawa S, Ago H (2014) Determination of damage-free crystal structure of an X-ray-sensitive protein using an XFEL. Nat Methods 11(7):734–736. doi:10.1038/nmeth.2962

    Article  CAS  PubMed  Google Scholar 

  • Hofmann E, Wrench PM, Sharples FP, Hiller RG, Welte W, Diederichs K (1996) Structural basis of light harvesting by carotenoids: peridinin- chlorophyll-protein from Amphidinium carterae. Science 272(5269):1788–1791

    Article  CAS  PubMed  Google Scholar 

  • Hunter CN, Daldal F, Thurnauer MC, Beatty JT (2009) The purple photosynthetic bacteria, vol 28, Advances in photosynthesis and respiration. Springer, Dordrecht

    Book  Google Scholar 

  • Jeffrey SW, Mantoura RFC, Wright SW (2005) Phytoplankton pigments in oceanography; guidelines to modern methods, 2nd edn. UNESCO, Paris

    Google Scholar 

  • Karrasch S, Bullough PA, Ghosh R (1995) The 8.5 Å projection map of the light-harvesting complex I from Rhodospirillum rubrum reveals a ring composed of 16 subunits. EMBO J 14(4):631–638

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kosumi D, Fujii R, Sugisaki M, Oka N, Iha M, Hashimoto H (2014a) Characterization of the intramolecular transfer state of marine carotenoid fucoxanthin by femtosecond pump–probe spectroscopy. Photosynth Res 121:61–68. doi:10.1007/s11120-014-9995-6

    Article  CAS  PubMed  Google Scholar 

  • Kosumi D, Kita M, Fujii R, Sugisaki M, Oka N, Takaesu Y, Taira T, Iha M, Hashimoto H (2012a) Excitation energy-transfer dynamics of brown algal photosynthetic antennas. J Phys Chem Lett 3:2659–2664. doi:dx.doi.org/10.1021/jz300612c

    Google Scholar 

  • Kosumi D, Kajikawa T, Okumura S, Sugisaki M, Sakaguchi K, Katsumura S, Hashimoto H (2014b) Elucidation and control of an intramolecular charge transfer property of fucoxanthin by a modification of its polyene chain length. J Phys Chem Lett 5:792–797. doi:10.1021/jz5000287

    Google Scholar 

  • Kosumi D, Komukai M, Hashimoto H, Yoshizawa M (2005) Ultrafast dynamics of all-trans-β-carotene explored by resonant and nonresonant photoexcitations. Phys Rev Lett 95:213601–213604

    Article  CAS  PubMed  Google Scholar 

  • Kosumi D, Kusumoto T, Fujii R, Sugisaki M, Iinuma Y, Oka N, Takaesu Y, Taira T, Iha M, Frank HA, Hashimoto H (2009) One- and two-photon pump–probe optical spectroscopic measurements reveal the S1 and intramolecular charge transfer states are distinct in fucoxanthin. Chem Phys Lett 483:95–100. doi:10.1016/j.cplett.2009.10.077

    Article  CAS  Google Scholar 

  • Kosumi D, Kusumoto T, Fujii R, Sugisaki M, Iinuma Y, Oka N, Takaesu Y, Taira T, Iha M, Frank HA, Hashimoto H (2011a) Ultrafast excited state dynamics of fucoxanthin: excitation energy dependent intramolecular charge transfer dynamics. Phys Chem Chem Phys 13:10762–10770. doi:10.1039/c0cp02568b

    Article  CAS  PubMed  Google Scholar 

  • Kosumi D, Kusumoto T, Fujii R, Sugisaki M, Iinuma Y, Oka N, Takaesu Y, Taira T, Iha M, Frank HA, Hashimoto H (2011b) Ultrafast S1 and ICT state dynamics of a marine carotenoid probed by femtosecond one- and two-photon pump-probe spectroscopy. J Lumin 131:515–518. doi:10.1016/j.jlumin.2010.09.018

    Article  CAS  Google Scholar 

  • Kosumi D, Maruta S, Horibe T, Nagaoka Y, Fujii R, Sugisaki M, Cogdell RJ, Hashimoto H (2012a) Ultrafast excited state dynamics of spirilloxanthin in solution and bound to core antenna complexes: Identification of the S* and T1 states. J Chem Phys 137:064505. doi:10.1063/1.4737129

    Article  PubMed  Google Scholar 

  • Kukura P, McCamant DW, Mathies RA (2007) Femtosecond stimulated Raman spectroscopy. Annu Rev Phys Chem 58:461–488. doi:10.1146/annurev.physchem.58.032806.104456

    Article  CAS  PubMed  Google Scholar 

  • Liu ZF, Yan HC, Wang KB, Kuang TY, Zhang JP, Gui LL, An XM, Chang WR (2004) Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution. Nature 428(6980):287–292

    Article  CAS  PubMed  Google Scholar 

  • Macpherson AN, Arellano JB, Fraser NJ, Cogdell RJ, Gillbro T (2001) Efficient energy transfer from the carotenoid S2 state in a photosynthetic light-harvesting complex. Biophys J 80(2):923–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCamant DW, Kim JE, Mathies RA (2002) Vibrational relaxation in β-carotene probed by picosecond stokes and anti-stokes resonance Raman spectroscopy. J Phys Chem A 106(25):6030–6038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDermott G, Prince SM, Freer AA, Hawthornthwaite-Lawless AM, Papiz MZ, Cogdell RJ, Isaacs NW (1995) Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 374:517–521

    Article  CAS  Google Scholar 

  • Müller P, Li X-P, Niyogi KK (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiol 125:1558–1566

    Article  PubMed  PubMed Central  Google Scholar 

  • Niwa S, Yu L-J, Takeda K, Hirano Y, Kawakami T, Wang-Otomo Z-Y, Miki K (2014) Structure of the LH1–RC complex from Thermochromatium tepidum at 3.0 Å. Nature 508:228–232. doi:10.1038/nature13197

    Article  CAS  PubMed  Google Scholar 

  • Ostroumov EE, Mulvaney RM, Cogdell RJ, Scholes GD (2013) Broadband 2D electronic spectroscopy reveals a carotenoid dark state in purple bacteria. Science 340:52–56. doi:10.1126/science.1230106

    Article  CAS  PubMed  Google Scholar 

  • Papagiannakis E, Das SK, Gall A, Stokkum IHM, Robert B, van Grondelle R, Frank HA, Kennis JTM (2003a) Light harvesting by carotenoids incorporated into the B850 light-harvesting complex from Rhodobacter sphaeroides R-26.1: excited-state relaxation, ultrafast triplet formation, and energy transfer to bacteriochlorophyll. J Phys Chem B 107:5642–5649

    Article  CAS  Google Scholar 

  • Papagiannakis E, van Stokkum IHM, van Grondelle R (2003b) A near-infrared transient absorption study of the excited-state dynamics of the carotenoid spirilloxanthin in solution and in the LH1 complex of Rhodospirillum rubrum. J Phys Chem B 107:11216–11223

    Article  CAS  Google Scholar 

  • Pinta V, Ouchane S, Picaud M, Takaichi S, Astier C, Reiss-Husson F (2003) Characterization of unusual hydroxy- and ketocarotenoids in Rubrivivax gelatinosus: involvement of enzyme CrtF or CrtA. Arch Microbiol 179(5):354–362. doi:10.1007/s00203-003-0538-3

    CAS  PubMed  Google Scholar 

  • Polívka T, Sundström V (2004) Ultrafast dynamics of carotenoids excited states – from solution to natural and artificial systems. Chem Rev 104(4):2021–2071

    Article  PubMed  Google Scholar 

  • Polívka T, Zigmantas D, Frank HA, Bautista JA, Herek JL, Koyama Y, Fujii R, Sundström V (2001) Near-infrared time-resolved study of the S1 state dynamics of the carotenoid spheroidene. J Phys Chem B 105(5):1072–1080

    Article  Google Scholar 

  • Qian P, Papiz MZ, Jackson PJ, Brindley AA, Ng IW, Olsen JD, Dickman MJ, Bullough PA, Hunter CN (2013) Three-dimensional structure of the Rhodobacter sphaeroides RC- LH1-PufX complex: dimerization and quinone channels promoted by PufX. Biochemistry 52:7575–7585. doi:10.1021/bi4011946

    Article  CAS  PubMed  Google Scholar 

  • Rohacek K, Kloz M, Bina D, Batysta F, Vacha F (2007) Investigation of the non-photochemical processes in photosynthetic bacteria and higher plants using interference of coherent radiation - a new approach. Photosynth Res 91(2-3):301–301

    Google Scholar 

  • Rondonuwu FS, Yokoyama K, Fujii R, Koyama Y, Cogdell RJ, Watanabe Y (2004) The role of the 11Bu- state in carotenoid-to-bacteriochlorophyll singlet-energy transfer in the LH2 antenna complexes from Rhodobacter sphaeroides G1C, Rhodobacter sphaeroides 2.4.1, Rhodospirillum molischianum and Rhodopseudomonas acidophila. Chem Phys Lett 390(4-6):314–322

    Article  CAS  Google Scholar 

  • Roszak AW, Howard TD, Southall J, Gardiner AT, Law CJ, Isaacs NW, Cogdell RJ (2003) Crystal structure of the RC-LH1 core complex from Rhodopseudomonas palustris. Science 302(5652):1969–1972. doi:10.1126/science.1088892

    Article  CAS  PubMed  Google Scholar 

  • Roszak AW, McKendrick K, Gardiner AT, Mitchell IA, Isaacs NW, Cogdell RJ, Hashimoto H, Frank HA (2004) Protein regulation of carotenoid binding: Gatekeeper and locking amino acid residues in reaction centers of Rhodobacter sphaeroides. Structure 12(5):765–773. doi:10.1016/j.str.2004.02.037

    Article  CAS  PubMed  Google Scholar 

  • Ruban AV, Horton P (1995) Regulation of non-photochemical quenching of chlorophyll fluorescence in plants. Aust J Plant Physiol 22(2):221–230

    Article  CAS  Google Scholar 

  • Sashima T, Koyama Y, Yamada T, Hashimoto H (2000) The 1Bu +, 1Bu , and 2Ag energies of crystalline lycopene, β-carotene, and mini-9-β-carotene as determined by resonance-raman excitation profiles: dependence of the 1Bu state energy on the conjugation length. J Phys Chem B 104(20):5011–5019

    Article  CAS  Google Scholar 

  • Scheuring S, Sturgis JN (2009) Atomic force microscopy of the bacterial photosynthetic apparatus: plain pictures of an elaborate machinery. Photosynth Res 102:197–211. doi:10.1007/s11120-009-9413-7

    Article  CAS  PubMed  Google Scholar 

  • Siebert CA, Qian P, Fotiadis D, Engel A, Hunter CN, Bullough PA (2004) Molecular architecture of photosynthetic membranes in Rhodobacter sphaeroides: the role of PufX. EMBO J 23(4):690–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stock D, Leslie AGW, Walker JE (1999) Molecular architecture of the rotary motor in ATP synthase. Science 286:1700–1705

    Article  CAS  PubMed  Google Scholar 

  • Suga M, Akita F, Hirata K, Ueno G, Murakami H, Nakajima Y, Shimizu T, Yamashita K, Yamamoto M, Ago H, Shen J (2014) Native structure of photosystem II at 1.95 A resolution viewed by femtosecond X-ray pulses. Nature. 517:99–103. doi:10.1038/nature13991

    Google Scholar 

  • Sundström V, Pullerits T, van Grondelle R (1999) Photosynthetic light-harvesting: reconciling dynamics and structure of purple bacterial LH2 reveals function of photosynthetic unit. J Phys Chem B 103:2327–2346

    Article  Google Scholar 

  • Takaichi S (2006) Carotenoid – its diversity and biological activity. Shokabo, Tokyo (in Japanese)

    Google Scholar 

  • Takaichi S, Mimuro M (1998) Distribution and geometric isomerism of neoxanthin in oxygenic phototrophs: 9′-cis, a sole molecular form. Plant Cell Physiol 39(9):968–977

    Article  CAS  Google Scholar 

  • Tavan P, Schulten K (1986) The low-lying electronic excitations in long polyenes: a PPP-MRD-CI study. J Chem Phys 85:6602–6609

    Google Scholar 

  • Tavan P, Schulten K (1987) Electronic excitations in finite and infinite polyenes. Phys Rev B Condens Matter 36(8):4337–4358

    Article  CAS  PubMed  Google Scholar 

  • Tomita A, Sato T, Ichiyanagi K, Nozawa S, Ichikawa H, Chollet M, Kawai F, Park SY, Tsuduki T, Yamato T, Koshihara SY, Adachi S (2009) Visualizing breathing motion of internal cavities in concert with ligand migration in myoglobin. Proc Natl Acad Sci U S A 106(8):2612–2616. doi:10.1073/pnas.0807774106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Umena Y, Kawakami K, Shen J-R, Kamiya N (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9Å. Nature 473:55–60. doi:10.1038/nature09913

    Article  CAS  PubMed  Google Scholar 

  • van Grondelle R (2011) Excitation energy transfer and non-photochemical quenching in photosynthesis. Eur Biophys J Biophys Lett 40:180–180

    Google Scholar 

  • Wohlleben W, Buckup T, Hashimoto H, Cogdell RJ, Herek JL, Motzkus M (2004) Pump-deplete-probe spectroscopy and the puzzle of carotenoid dark states. J Phys Chem B 108(10):3320–3325

    Article  CAS  Google Scholar 

  • Xia D, Yu C-A, Kim H, Xia J-Z, Kachurin AM, Zhang L, Yu L, Deisenhofer J (1997) Crystal structure of the cytochrome bc 1 complex from bovine heart mitochondria. Science 277:60–66. doi:10.1126/science.277.5322.60

    Article  CAS  PubMed  Google Scholar 

  • Yoshizawa M, Aoki H, Hashimoto H (2001) Vibrational relaxation of the 2Ag excited state in all-trans-β-carotene obtained by femtosecond time-resolved Raman spectroscopy. Phys Rev B 63(18):180301(R). doi:10.1103/PhysRevB.63.180301

  • Yoshizawa M, Aoki H, Hashimoto H (2002) Femtosecod time-resolved raman signals on ultrafast dynamics in all-trans-β-carotene. Bull Chem Soc Jpn 75:949–955

    Article  CAS  Google Scholar 

  • Yoshizawa M, Kurosawa M (1999) Femtosecond time-resolved Raman spectroscopy using stimulated Raman scattering. Phys Rev A 61:013808

    Article  Google Scholar 

  • Young A, Britton G (1993) Carotenoids in photosynthesis. Chapman & Hall, London

    Book  Google Scholar 

  • Zigmantas D, Hiller RG, Sundstrom V, Polivka T (2002) Carotenoid to chlorophyll energy transfer in the peridinin-chlorophyll-a-protein complex involves an intramolecular charge transfer state. Proc Natl Acad Sci U S A 99(26):16760–16765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zigmantas D, Polívka T, Hiller RG, Yartsev A, Sundström V (2001) Spectroscopic and dynamic properties of the peridinin lowest singlet excited states. J Phys Chem A 105(45):10296–10306

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank JST, JSPS, MEXT, HFSP, and BBSRC for financial support. HH thanks Scientific Research on Innovative Areas “All Nippon Artificial Photosynthesis Project for Living Earth (AnApple)” (No. 24107002H) from the Japan Society for the Promotion of Science (JSPS) for financial support. This work was supported by JSPS KAKENHI Grant-in-Aid for JSPS fellows (No. 254691) to CU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideki Hashimoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hashimoto, H., Uragami, C., Cogdell, R.J. (2016). Carotenoids and Photosynthesis. In: Stange, C. (eds) Carotenoids in Nature. Subcellular Biochemistry, vol 79. Springer, Cham. https://doi.org/10.1007/978-3-319-39126-7_4

Download citation

Publish with us

Policies and ethics