Skip to main content
Log in

Influence of Hyphal Inoculum potential on the Competitive Success of Fungi Colonizing Wood

  • Fungal Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The relative amounts of hyphal inoculum in forest soils may determine the capacity for fungi to compete with and replace early colonizers of wood in ground contact. Our aim in this study was to test the flexibility of priority effects (colonization timing) by varying the timing of inoculum introduction (i.e., precolonization) and amount of inoculum (i.e., inoculum potential). We controlled these variables in soil-block microcosms using fungi with known competitive outcomes in similar conditions, tracking isolate-specific fungal biomass, and residue physiochemistry over time. In the precolonization trial (experiment I), a brown rot fungus Gloeophyllum trabeum was given 1, 3, or 5 weeks to precolonize wood blocks (oak, birch, pine, and spruce) prior the introduction of a white rot fungus, Irpex lacteus, a more aggressive colonizer in this set-up. In the inoculum potential trial (experiment II), the fungi were inoculated simultaneously, but with eightfold higher brown rot inoculum than that of experiment I. As expected, longer precolonization duration increased the chance for the less-competitive brown rot fungus to outcompete its white rot opponent. Higher brown rot fungal inoculum outside of the wood matrix also resulted in competitive success for the brown rot isolate in most cases. These temporal shifts in fungal dominance were detectable in a ‘community snapshot’ as isolate-specific quantitative PCR, but also as functionally-relevant consequences of wood rot type, including carbohydrate depolymerization and pH. These results from a controlled system reinforce fungal-fungal interaction and suggest that relative inoculum availability beyond the wood matrix (i.e., soils) might regulate the duration of priority effects and shift the functional trajectory of wood decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Harmon ME, Franklin JF, Swanson F et al (1986) Ecology of coarse woody debris in temperate ecosystems. Adv Ecol Res 15:135–305

    Google Scholar 

  2. Malhi Y (2002) Carbon in the atmosphere and terrestrial biosphere in the 21st century. Phil Trans R Soc Lond A 360:2925–2945

    Article  CAS  Google Scholar 

  3. Weedon JT, Cornwell WK, Cornelissen C et al (2009) Global meta-analysis of wood decomposition rates: a role for trait variation among tree species? Ecol Lett 12:45–56. doi:10.1111/j.1461-0248.2008.01259.x

    Article  PubMed  Google Scholar 

  4. Freschet GT, Weedon JT, Aerts R et al (2012) Interspecific differences in wood decay rates: insights from a new short-term method to study long-term wood decomposition. J Ecol 100:161–170. doi:10.1111/j.1365-2745.2011.01896.x

    Article  Google Scholar 

  5. Gilbertson R (1980) Wood-rotting fungi of North America. Mycologia 72:1–49

    Article  Google Scholar 

  6. Riley R, Salamov AA, Brown DW et al (2014) Extensive sampling of Basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi. Proc Natl Acad Sci. doi:10.1073/pnas.1400592111

    Google Scholar 

  7. Rypáček V, Rypáčková M (1975) Brown rot of wood as a model for studies of lignocellulose humification. Biol Plant 17:452–457

    Article  Google Scholar 

  8. Jurgensen M, Harvey A (1997) Impacts of timber harvesting on soil organic matter, nitrogen, productivity, and health of inland northwest forests. For Sci 43:234–251

    Google Scholar 

  9. Filley T, Goodell B, Cody G et al (2002) Lignin demethylation and polysaccharide decomposition in spruce sapwood degraded by brown rot fungi. Org Geochem 33:111–124. doi:10.1016/S0146-6380(01)00144-9

    Article  CAS  Google Scholar 

  10. Song Z, Vail A, Sadowsky MJ, Schilling JS (2012) Competition between two wood-degrading fungi with distinct influences on residues. FEMS Microbiol Ecol 79:109–117. doi:10.1111/j.1574-6941.2011.01201.x

    Article  CAS  PubMed  Google Scholar 

  11. Blanchette RA (1991) Delignification by wood-decay fungi. Annu Rev Phytopathol 29:381–403. doi:10.1146/annurev.py.29.090191.002121

    Article  CAS  Google Scholar 

  12. Kerem Z, Jensen KA, Hammel KE (1999) Biodegradative mechanism of the brown rot basidiomycete Gloeophyllum trabeum: evidence for an extracellular hydroquinone-driven fenton reaction. FEBS Lett 446:49–54. doi:10.1016/S0014-5793(99)00180-5

    Article  CAS  PubMed  Google Scholar 

  13. Leonowicz A, Matuszewska A, Luterek J et al (1999) Biodegradation of lignin by white rot fungi. Fungal Genet Biol 27:175–185. doi:10.1006/fgbi.1999.1150

    Article  CAS  PubMed  Google Scholar 

  14. Schwarze F (2007) Wood decay under the microscope. Fungal Biol Rev 21:133–170. doi:10.1016/j.fbr.2007.09.001

    Article  Google Scholar 

  15. Worrall J, Anagnost S, Zabel R (1997) Comparison of wood decay among diverse lignicolous fungi. Mycologia 89:199–219

    Article  Google Scholar 

  16. Bradford MA, Warren RJ II, Baldrian P et al (2014) Climate fails to predict wood decomposition at regional scales. Nat Clim Chang 4:625–630. doi:10.1038/nclimate2251

    Article  CAS  Google Scholar 

  17. Fukami T, Dickie I, Wilkie JP et al (2010) Assembly history dictates ecosystem functioning: evidence from wood decomposer communities. Ecol Lett 13:675–684. doi:10.1111/j.1461-0248.2010.01465.x

    Article  PubMed  Google Scholar 

  18. Chase JM (2010) Stochastic community assembly causes higher biodiversity in more productive environments. Science 328:1388–1391. doi:10.1126/science.1187820

    Article  CAS  PubMed  Google Scholar 

  19. Lebrija-Trejos E, Pérez-García EA, Meave JA et al (2010) Functional traits and environmental filtering drive community assembly in a species-rich tropical system. Ecology 91:386–398

    Article  PubMed  Google Scholar 

  20. Garcia-Pichel F, Loza V, Marusenko Y et al (2013) Temperature drives the continental-scale distribution of key microbes in topsoil communities. Science 340:1574–1577. doi:10.1126/science.1236404

    Article  CAS  PubMed  Google Scholar 

  21. Fortunel C, Paine CET, Fine PV et al (2014) Environmental factors predict community functional composition in Amazonian forests. J Ecol 102:145–155. doi:10.1111/1365-2745.12160

    Article  Google Scholar 

  22. Hooper DU, Chapin FS, Ewel JJ et al (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge and needs for future research. Ecol Monogr 75:3–35

    Article  Google Scholar 

  23. Kennedy PG, Peay KG, Bruns TD (2009) Root tip competition among ectomycorrhizal fungi: are priority effects a rule or an exception? Ecology 90:2098–2107

    Article  PubMed  Google Scholar 

  24. Huston MA, Raffaelli D, Schmid B et al (2014) Biodiversity current and future functioning: challenges knowledge. Science 294:804–808

    Google Scholar 

  25. Niemela T, Renvall P, Penttila R (1995) Interactions of fungi at late stages of wood decomposition. Ann Bot Fenn 32:141–152

    Google Scholar 

  26. Tiunov AV, Scheu S (2005) Facilitative interactions rather than resource partitioning drive diversity-functioning relationships in laboratory fungal communities. Ecol Lett 8:618–625. doi:10.1111/j.1461-0248.2005.00757.x

    Article  Google Scholar 

  27. Tan J, Pu Z, Ryberg W, Jiang L (2012) Species phylogenetic relatedness, priority effects, and ecosystem functioning. Ecology 93:1164–1172

    Article  PubMed  Google Scholar 

  28. Dickie I, Fukami T, Wilkie JP et al (2012) Do assembly history effects attenuate from species to ecosystem properties? A field test with wood-inhabiting fungi. Ecol Lett 15:133–141. doi:10.1111/j.1461-0248.2011.01722.x

    Article  PubMed  Google Scholar 

  29. Schubert M, Fink S, Schwarze FWMR (2008) Evaluation of Trichoderma spp. as a biocontrol agent against wood decay fungi in urban trees. Biol Control 45:111–123. doi:10.1016/j.biocontrol.2008.01.001

    Article  Google Scholar 

  30. Susi P, Aktuganov G, Himanen J, Korpela T (2011) Biological control of wood decay against fungal infection. J Environ Manag 92:1681–1689. doi:10.1016/j.jenvman.2011.03.004

    Article  Google Scholar 

  31. Liu R, Luo X (1994) A new method to quantify the inoculum potential of arbuscular mycorrhizal fungi. New Phytol 128:89–92

    Article  Google Scholar 

  32. Rao A, Rao M (1963) Inoculum potential and the fusarial wilt of cotton. Nature 200:598–599

    Article  Google Scholar 

  33. Daniels B, McCool P, Menge J (1981) Comparative inoculum potential of spores of six vesicular‐arbuscular mycorrhizal fungi. New Phytol 89:385–391

    Article  Google Scholar 

  34. Holmer L, Stenlid J (1993) The importance of inoculum size for the competitive ability of wood decomposing fungi. FEMS Microbiol Ecol 12:169–176. doi:10.1111/j.1574-6941.1993.tb00029.x

    Article  Google Scholar 

  35. Jönsson MT, Edman M, Jonsson BG (2008) Colonization and extinction patterns of wood-decaying fungi in a boreal old-growth Picea abies forest. J Ecol 96:1065–1075. doi:10.1111/j.1365-2745.2008.01411.x

    Article  Google Scholar 

  36. Schilling JS, Jellison J (2005) Oxalate regulation by two brown rot fungi decaying oxalate-amended and non-amended wood. Holzforschung 59:681–688. doi:10.1515/HF.2005.109

    Article  CAS  Google Scholar 

  37. Jasalavich CA, Ostrofsky A, Jellison J (2000) Detection and identification of decay fungi in spruce wood by restriction fragment length polymorphism analysis of amplified genes encoding rRNA. Appl Environ Microbiol 66:4725–4734

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Song Z, Vail A, Sadowsky MJ, Schilling JS (2014) Quantitative PCR for measuring biomass of decomposer fungi in planta. Fungal Ecol 7:39–46. doi:10.1016/j.funeco.2013.12.004

    Article  Google Scholar 

  39. Shortle W, Dudzik K, Smith K (2010) Development of wood decay in wound-initiated discolored wood of eastern red cedar. Holzforschung 64:529–536. doi:10.1515/HF.2010.051

    Article  CAS  Google Scholar 

  40. Qualhato TF, Lopes FAC, Steindorff AS et al (2013) Mycoparasitism studies of Trichoderma species against three phytopathogenic fungi: evaluation of antagonism and hydrolytic enzyme production. Biotechnol Lett 35:1461–1468. doi:10.1007/s10529-013-1225-3

    Article  CAS  PubMed  Google Scholar 

  41. Zabel RA, Morrell JJ (1992) Wood microbiology—Decay and its prevention. Academic Press, Inc., San Diego

    Google Scholar 

  42. Cease K, Blanchette R, Highley T (1989) Interactions between Scytalidium species and brown-or white-rot basidiomycetes in birch wood. Wood Sci Technol 61:151–161

    Google Scholar 

  43. Zakaria A, Boddy L (2002) Mycelial foraging by Resinicium bicolor: interactive effects of resource quantity, quality and soil composition. FEMS Microbiol Ecol 40:135–142

    Article  CAS  PubMed  Google Scholar 

  44. Herman J, Moorhead D, Berg B (2008) The relationship between rates of lignin and cellulose decay in aboveground forest litter. Soil Biol Biochem 40:2620–2626. doi:10.1016/j.soilbio.2008.07.003

    Article  CAS  Google Scholar 

  45. Ferguson B, Dreisbach T (2003) Coarse-scale population structure of pathogenic Armillaria species in a mixed-conifer forest in the Blue Mountains of northeast Oregon. Can J For Res 623:612–623. doi:10.1139/X03-065

    Article  Google Scholar 

  46. Snajdr J, Dobiášová P, Větrovský T et al (2011) Saprotrophic basidiomycete mycelia and their interspecific interactions affect the spatial distribution of extracellular enzymes in soil. FEMS Microbiol Ecol 78:80–90. doi:10.1111/j.1574-6941.2011.01123.x

    Article  CAS  PubMed  Google Scholar 

  47. Peay KG, Garbelotto M, Bruns TD (2010) Evidence of dispersal limitation in soil microorganisms: isolation reduces species richness on mycorrhizal tree islands. Ecology 91:3631–3640

    Article  PubMed  Google Scholar 

  48. Peay KG, Bruns TD (2014) Spore dispersal of basidiomycete fungi at the landscape scale is driven by stochastic and deterministic processes and generates variability in plant-fungal interactions. New Phytol. doi:10.1111/nph.12906

    Google Scholar 

  49. Stenlid J, Gustafsson M (2001) Are rare wood decay fungi threatened by inability to spread? Ecol Bull 49:85–91

    Google Scholar 

  50. Schilling JS (2010) Effects of calcium-based materials and iron impurities on wood degradation by the brown rot fungus Serpula lacrymans. Holzforschung 64:93–99. doi:10.1515/HF.2010.009

    Article  CAS  Google Scholar 

  51. Liew FJ, Schilling JS (2012) Choice tests and neighbor effects during fungal brown rot of copper- or non-treated wood. Int Biodeterior Biodegrad 74:7–10

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was made possible through the generous support of the Conservation and the Environment grants program of The Andrew W. Mellon Foundation (New York, NY). We thank the University of Minnesota Graduate School for Grant-in-aid of Research, Artistry and Scholarship funding in the initial stages of method development. A doctoral dissertation fellowship of the University of Minnesota, awarded to Zewei Song, also provided generous support for this research. We also wanted to thank Dr. Seavey in helping produce the wood blocks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan S. Schilling.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig S1

(DOCX 441 kb)

Fig S2

(DOCX 1680 kb)

Fig S3

(DOCX 1060 kb)

Table S1

(DOCX 14.7 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Z., Vail, A., Sadowsky, M.J. et al. Influence of Hyphal Inoculum potential on the Competitive Success of Fungi Colonizing Wood. Microb Ecol 69, 758–767 (2015). https://doi.org/10.1007/s00248-015-0588-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-015-0588-5

Keywords

Navigation