Skip to main content
Log in

Effect of Multi-walled Carbon Nanotubes on Metabolism and Morphology of Filamentous Green Microalgae

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Multi-walled carbon nanotubes (MWCNTs) have potential applications in the industrial, agricultural, pharmaceutical, medical, and environmental remediation fields. However, many uncertainties exist regarding the environmental implications of engineered nanomaterials. This study examined the effect of the MWCNTs on metabolic status and morphology of filamentous green microalgae Klebsormidium flaccidum. Appropriate concentrations of MWCNT (1, 50, and 100 μg mL−1) were added to a microalgal culture in the exponential growth phase and incubated for 24, 48, 72, and 96 h. Exposure to MWCNT led to reductions in algal growth after 48 h and decreased on cell viability for all experimental endpoints except for 1 µg mL−1 at 24 h and 100 µg mL−1 after 72 h. At 100 µg mL−1, MWCNTs induced reactive oxygen species (ROS) production and had an effect on intracellular adenosine triphosphate (ATP) content depending on concentration and time. No photosynthetic activity variation was observed. Observations by scanning transmission electron microscopy showed cell damage. In conclusion, we have demonstrated that exposure to MWCNTs affects cell metabolism and microalgal cell morphology. To our best knowledge, this is the first case in which MWCNTs exhibit adverse effects on filamentous green microalgae K. flaccidum. These results contribute to elucidate the mechanism of MWCNT nanotoxicity in the bioindicator organism of terrestrial and freshwater habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abbasian F, Lockington R, Palanisami T et al (2016) Multiwall carbon nanotubes increase the microbial community in crude oil contaminated fresh water sediments. Sci Total Environ 539:370–380. doi:10.1016/j.scitotenv.2015.09.031

    Article  CAS  Google Scholar 

  • Albanese A, Chan WC (2011) Effect of gold nanoparticle aggregation on cell uptake and toxicity. ACS Nano 5:5478–5489. doi:10.1021/nn2007496

    Article  CAS  Google Scholar 

  • Ali D, Ahmed M, Alarifi S et al (2015) Ecotoxicity of single-wall carbon nanotubes to freshwater snail Lymnaea luteola L.: impacts on oxidative stress and genotoxicity. Environ Toxicol 30:674–682. doi:10.1002/tox.21945

    Article  CAS  Google Scholar 

  • Allegri M, Perivoliotis MA, Bianchi MG et al (2016) Toxicity determinants of multi-walled carbon nanotubes: the relationship between functionalization and agglomeration. Toxicol Rep 3:230–243. doi:10.1016/j.toxrep.2016.01.011

    Article  CAS  Google Scholar 

  • Barberousse H, Tell G, Yéprémian C et al (2006) Diversity of algae and cyanobacteria growing on buildings facades in France. Algolog Stud 120:81–105. doi:10.1127/1864-1318/2006/0120-0081

    Article  Google Scholar 

  • Blaise C, Gagné F, Férard JF et al (2008) Ecotoxicity of selected nano-materials to aquatic organisms. Environ Toxicol 23:591–598. doi:10.1002/tox.20402

    Article  CAS  Google Scholar 

  • Bortner CD, Cidlowski JA (2002) Apoptotic volume decrease and the incredible shrinking cell. Cell Death Differ 9:1307–1310. doi:10.1038/sj.cdd.4401126

    Article  CAS  Google Scholar 

  • Calabrese V, Scapagnini G, Giuffrida-Stella AM et al (2001) Mitochondrial involvement in brain function and dysfunction: relevance to aging, neurodegenerative disorders and longevity. Neurochem Res 26:739–764. doi:10.1023/A:1010955807739

    Article  CAS  Google Scholar 

  • Calisi A, Grimaldi A, Leomanni A et al (2016) Multibiomarker response in the earthworm Eisenia fetida as tool for assessing multi-walled carbon nanotube ecotoxicity. Ecotoxicology 4:677–687. doi:10.1007/s10646-016-1626-x

    Article  Google Scholar 

  • Cano AM, Kohl K, Deleon S et al (2016) Determination of uptake, accumulation, and stress effects in corn (Zea mays L.) grown in single-wall carbon nanotube contaminated soil. Chemosphere 152:117–122. doi:10.1016/j.chemosphere.2016.02.093

    Article  CAS  Google Scholar 

  • Cao Y, Jacobsen NR, Danielsen PH et al (2014) Vascular effects of multiwalled carbon nanotubes in dyslipidemic ApoE-/- mice and cultured endothelial cells. Toxicol Sci 138:104–116. doi:10.1093/toxsci/kft328

    Article  CAS  Google Scholar 

  • Cheng WW, Lin ZQ, Wei BF et al (2011) Single-walled carbon nanotube induction of rat aortic endothelial cell apoptosis: reactive oxygen species are involved in the mitochondrial pathway. Int J Biochem Cell Biol 43:564–572. doi:10.1016/j.biocel.2010.12.013

    Article  CAS  Google Scholar 

  • Cho EC, Xie JW, Wurm PA et al (2009) Understanding the role of surface charges in cellular adsorption versus internalization by selectively removing gold nanoparticles on the cell surface with a I2/KI etchant. Nano Lett 9:1080–1084. doi:10.1021/nl803487r

    Article  CAS  Google Scholar 

  • Corredor C, Hou WC, Klein SA et al (2013) Disruption of model cell membranes by carbon nanotubes. Carbon 60:67–75. doi:10.1016/j.carbon.2013.03.057

    Article  CAS  Google Scholar 

  • Costa CS, Ronconi JV, Daufenbach JF et al (2010) In vitro effects of silver nanoparticles on the mitochondrial respiratory chain. Mol Cell Biochem 342:51–56. doi:10.1016/j.carbon.2013.03.057

    Article  CAS  Google Scholar 

  • De Volder MF, Tawfick SH, Baughman RH et al (2013) Carbon nanotubes: present and future commercial applications. Science 39:535–539. doi:10.1126/science.1222453

    Article  Google Scholar 

  • Di Giorgio ML, Di Bucchianico S, Ragnelli AM et al (2011) Effects of single and multi walled carbon nanotubes on macrophages: cyto and genotoxicity and electron microscopy. Mutat Res 722:20–31. doi:10.1016/j.mrgentox.2011.02.008

    Article  Google Scholar 

  • Dixon SJ, Stockwell BR (2014) The role of iron and reactive oxygen species in cell death. Nat Chem Biol 10:9–17. doi:10.1038/nchembio.1416

    Article  CAS  Google Scholar 

  • Duman O, Tunç S (2009) Electrokinetic and rheological properties of Na-bentonite in some electrolyte solutions. Micropor Mesopor Mat 117:331–338. doi:10.1016/j.micromeso.2008.07.007

    Article  CAS  Google Scholar 

  • El Badawy AM, Silva RG, Morris B et al (2011) Surface charge-dependent toxicity of silver nanoparticles. Environ Sci Technol 45:283–287. doi:10.1021/es1034188

    Article  Google Scholar 

  • Fu PP, Xia Q, Hwang HM et al (2014) Mechanisms of nanotoxicity: generation of reactive oxygen species. J Food Drug Anal 1:64–75. doi:10.1016/j.jfda.2014.01.005

    Article  Google Scholar 

  • Gato MA, Naseem S, Arfat MY et al (2014) Physicochemical properties of nanomaterials: implication in associated toxic manifestations. Biomed Res Int. doi:10.1155/2014/498420

    Google Scholar 

  • Giraldo JP, Landry MP, Faltermeier SM et al (2014) Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat Mater 4:400–408. doi:10.1038/nmat3890

    Article  Google Scholar 

  • Horie M, Kato H, Endoh S et al (2014) Cellular effects of industrial metal nanoparticles and hydrophilic carbon black dispersion. J Toxicol Sci 39:897–907. doi:10.2131/jts.39.897

    Article  CAS  Google Scholar 

  • Jiang W, Wang Q, Qu X et al (2016) Effects of charge and surface defects of multi-walled carbon nanotubes on the disruption of model cell membranes. Sci Total Environ 574:771–780. doi:10.1016/j.scitotenv.2016.09.150

    Article  Google Scholar 

  • Karsten U, Herburger K, Holzinger A (2017) Photosynthetic plasticity in the green algal species Klebsormidium flaccidum (Streptophyta) from a terrestrial and a freshwater habitat. Phycologia 2:213–220

    Article  Google Scholar 

  • Kim JS, Song KS, Lee JK et al (2012) Toxicogenomic comparison of multi-wall carbon nanotubes (MWCNTs) and asbestos. Arch Toxicol 86:553–562. doi:10.1007/s00204-011-0770-6

    Article  CAS  Google Scholar 

  • Lawal AT (2016) Synthesis and utilization of carbon nanotubes for fabrication of electrochemical biosensors. Mater Res Bull 73:308–350. doi:10.1016/j.materresbull.2015.08.037

    Article  CAS  Google Scholar 

  • Letts RE, Pereira TC, Bogo MR et al (2011) Biologic responses of bacteria communities living at the mucus secretion of common carp (Cyprinus carpio) after exposure to the carbon nanomaterial fullerene (C60). Arch Environ Contam Toxicol 2:311–317. doi:10.1007/s00244-010-9618-y

    Article  Google Scholar 

  • Mortimer M, Petersen EJ, Buchholz BA et al (2016) Bioaccumulation of multiwall carbon nanotubes in Tetrahymena thermophila by direct feeding or trophic transfer. Environ Sci Technol 50:8876–8885. doi:10.1021/acs.est.6b01916

    Article  CAS  Google Scholar 

  • Munk M, Brandão HM, Nowak S et al (2015) Direct and indirect toxic effects of cotton-derived cellulose nanofibres on filamentous green algae. Ecotoxicol Environ Saf 122:399–405. doi:10.1016/j.ecoenv.2015.09.001

    Article  CAS  Google Scholar 

  • Munk M, Ladeira LO, Carvalho BC et al (2016) Efficient delivery of DNA into bovine preimplantation embryos by multiwall carbon nanotubes. Sci Rep 6:33588. doi:10.1038/srep33588

    Article  CAS  Google Scholar 

  • Nagai H, Toyokuni S (2012) Differences and similarities between carbon nanotubes and asbestos fibers during mesothelial carcinogenesis: shedding light on fiber entry mechanism. Cancer Sci 103:1378–1390. doi:10.1111/j.1349-7006.2012.02326.x

    Article  CAS  Google Scholar 

  • Navarro A, Boveris A (2007) The mitochondrial energy transduction system and the aging process. Am J Physiol Cell Physiol 292:670–686. doi:10.1152/ajpcell.00213.2006

    Article  Google Scholar 

  • Nguyen KC, Rippstein P, Tayabali AF et al (2015) Mitochondrial toxicity of cadmium telluride quantum dot nanoparticles in mammalian hepatocytes. Toxicol Sci 146:31–42. doi:10.1093/toxsci/kfv068

    Article  CAS  Google Scholar 

  • Nii D, Miyachi M, Shimada Y et al (2016) Conjugates between photosystem I and a carbon nanotube for a photoresponse device. Photosynth Res. doi:10.1007/s11120-016-0324-0

    Google Scholar 

  • Palomaki J, Välimäki E, Sund J et al (2011) Long, needle-like carbon nanotubes and asbestos activate the nlrp3 inflammasome through a similar mechanism. ACS Nano 5:6861–6870. doi:10.1021/nn200595c

    Article  CAS  Google Scholar 

  • Patlolla AK, Hussain SM, Schlager JJ et al (2010) Comparative study of the clastogenicity of functionalized and nonfunctionalized multiwalled carbon nanotubes in bone marrow cells of Swiss-Webster mice. Environ Toxicol 25:608–621. doi:10.1002/tox.20621

    Article  CAS  Google Scholar 

  • Pereira MM, Mouton L, Yéprémian C et al (2014) Ecotoxicological effects of carbon nanotubes and cellulose nanofibers in Chlorella vulgaris. J Nanobiotechnology 22:12–15. doi:10.1186/1477-3155-12-15

    Google Scholar 

  • Pujalte I, Passagne I, Brouillaud B et al (2011) Cytotoxicity and oxidative stress induced by different metallic nanoparticles on human kidney cells. Part Fibre Toxicol 8:10. doi:10.1186/1743-8977-8-10

    Article  CAS  Google Scholar 

  • RnR Market Research: RnR Market Research (2015) Carbon nanotubes market by type (single-walled and multi-walled), by application (electronics & semiconductors, chemical & polymers, batteries & capacitors, energy, medical application, advanced materials, aerospace & defense, others); Global Forecasts to 2020. http://www.marketsandmarkets.com/Market-Reports/carbon-nanotubes-139.html. Accessed 20 Dec 2016

  • Ryšánek D, Holzinger A, Škaloud P (2016) Influence of substrate and pH on the diversity of the aeroterrestrial alga Klebsormidium (Klebsormidiales, Streptophyta): a potentially important factor for sympatric speciation. Phycologia 4:347–358

    Article  Google Scholar 

  • Schwab F, Bucheli TD, Lukhele LP et al (2011) Are carbon nanotube effects on green algae caused by shading and agglomeration? Environ Sci Technol 45:6136–6144. doi:10.1021/es200506b

    Article  CAS  Google Scholar 

  • Snyder RJ, Hussain S, Rice AB et al (2014) Multiwalled carbon nanotubes induce altered morphology and loss of barrier function in human bronchial epithelium at noncytotoxic doses. Int J Nanomedicine 9:4093–4105. doi:10.2147/IJN.S65567

    Article  CAS  Google Scholar 

  • Sohaebuddin SK, Thevenot PT, Baker D et al (2010) Nanomaterial cytotoxicity is composition, size, and cell type dependent. Part Fibre Toxicol 7:22. doi:10.1186/1743-8977-7-22

    Article  Google Scholar 

  • Viana CDO, Vaz RP, Cano A et al (2015) Physiological changes of the lichen Parmotrema tinctorum as result of carbon nanotubes exposition. Ecotoxicol Environ Saf 120:110–116. doi:10.1016/j.ecoenv.2015.05.034

    Article  CAS  Google Scholar 

  • Wirnitzer U, Herbold B, Voetz M (2009) Studies on the in vitro genotoxicity of baytubes, agglomerates of engineered multi-walled carbon-nanotubes (MWCNT). Toxicol Lett 3:160–165. doi:10.1016/j.toxlet.2008.11.024

    Article  Google Scholar 

  • Xin L, Wang J, Fan G et al (2015) Oxidative stress and mitochondrial injury-mediated cytotoxicity induced by silver nanoparticles in human A549 and HepG2 cells. Environ Toxicol 31:1691–1699. doi:10.1002/tox.22171

    Article  Google Scholar 

  • Yu M, Chen R, Jia Z et al (2016) MWCNTs induce ROS generation, ERK phosphorylation, and SOD-2 expression in human mesothelial cells. Int J Toxicol 35:17–26. doi:10.1177/1091581815591223

    Article  CAS  Google Scholar 

  • Zhang T, Tang M, Kong L et al (2012) Comparison of cytotoxic and inflammatory responses of pristine and functionalized multi-walled carbon nanotubes in RAW 264.7 mouse macrophages. J Hazard Mater 219:203–212. doi:10.1016/j.jhazmat.2012.03.079

    Article  Google Scholar 

  • Zhang W, Zhao Y, Cui B et al (2016) Evaluation of filamentous green algae as feedstocks for biofuel production. Bioresour Technol 220:407–413. doi:10.1016/j.biortech.2016.08.106

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by The National Collaborative Research Network in Nanotechnology Applied to Agribusiness, FAPEMIG, CNPq, and CAPES (04/CII-2008-Projet 7 Network Brazil Nanobiotec). The authors thank the staff at the Imago Seine (Jacques Monod Institute, Paris, France) imaging platform for assistance with transmission electron microscope.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Munk.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Munk, M., Brandão, H.M., Yéprémian, C. et al. Effect of Multi-walled Carbon Nanotubes on Metabolism and Morphology of Filamentous Green Microalgae. Arch Environ Contam Toxicol 73, 649–658 (2017). https://doi.org/10.1007/s00244-017-0429-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-017-0429-2

Navigation