Skip to main content

Advertisement

Log in

Toxicogenomic comparison of multi-wall carbon nanotubes (MWCNTs) and asbestos

  • Inorganic Compounds
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Carbon nanotubes (CNTs) have specific properties, including electrical and thermal conductivity, great strength, and rigidity, that allow them to be used in many fields. However, this increasing contact with humans and the environment is also raising health and safety concerns. Thus, research on the safety of CNTs has attracted much interest, including a comparison of the toxic effects of asbestos and carbon nanotubes, due to their physical similarity of a high aspect ratio (length/diameter). Nonetheless, there has not yet been a toxicogenomic comparison. Therefore, to examine toxicogenomic effects, the 50% growth inhibition (GI50) concentration was determined for multi-wall carbon nanotubes (MWCNTs) and asbestos (crocidolite) and found to be approximately 0.0135 and 0.066%, respectively, in the case of 24-h treatment of normal human bronchial epithelia (NHBE) cells. Using these GI50 concentrations, NHBE cells were then treated with MWCNTs and asbestos for 6 and 24 h, followed by a DNA microarray analysis. Among 31,647 genes, 1,201 and 1,252 were up-regulated by both asbestos and MWCNTs after 6 and 24 h of exposure, respectively. Meanwhile, 1,977 and 1,542 genes were down-regulated by both asbestos and MWNCTs after 6 and 24 h of exposure, respectively. In particular, the asbestos and MWCNTs both induced an over twofold up- and down-regulated expression of 12 mesothelioma-related genes and 22 lung cancer-related genes when compared with the negative control. Plus, the genes induced by the MWCNT exposure were expressed in the brain, lungs, epithelium, liver, and colon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bianco A, Kostarelos K, Partidos CD, Prato M (2005) Biomedical applications of functionalised carbon nanotubes. Chem Commun 5:571–577

    Article  Google Scholar 

  • Bottini M, Bruckner S, Nika K, Bottini N, Bellucci S, Magrini A, Bergamaschi A, Mustelin T (2006) Multi-walled carbon nanotubes induce T lymphocyte apoptosis. Toxicol Lett 160:121–126

    Article  PubMed  CAS  Google Scholar 

  • Camus M, Siemiatycki J, Meek B (1998) Nonoccupational exposure to chrysotile asbestos and the risk of lung cancer. N Engl J Med 338:1565–1571

    Article  PubMed  CAS  Google Scholar 

  • Capek I (2009) Dispersions, novel nanomaterial sensors, nanoconjugates based on carbon nanotubes. Adv Colloid Interface Sci 150:63–89

    Article  PubMed  CAS  Google Scholar 

  • Cheng N, Shi X, Ye J, Castranova V, Chen F, Leonard SS, Vallyathan V, Rojanasakul Y (1999) Role of transcription factor NF-[kappa]B in asbestos-induced TNF[alpha] response from macrophages. Exp Mol Pathol 66:201–210

    Article  PubMed  CAS  Google Scholar 

  • Chou CC, Hsiao HY, Hong QS, Chen CH, Peng YW, Chen HW, Yang PC (2008) Single-walled carbon nanotubes can induce pulmonary injury in mouse model. Nano Lett 8:437–445

    Article  PubMed  CAS  Google Scholar 

  • Chui D, Tian F, Ozkan CS, Wang MW, Gao H (2005) Effect of single wall carbon nanotubes on human HEK293 cells. Toxicol Lett 155:73–85

    Article  Google Scholar 

  • Coccini T, Roda E, Sarigiannis DA, Mustarelli P, Quartarone E, Profumo A, Manzo L (2010) Effects of water-soluble functionalized multi-walled carbon nanotubes examined by different cytotoxicity methods in human astrocyte D384 and lung A549 cells. Toxicology 269:41–53

    Article  PubMed  CAS  Google Scholar 

  • Ding L, Stilwell J, Zhang T, Elboudwarej O, Jiang H, Se-legue JP, Cooke PA, Gray JW, Chen FF (2005) Molecular characterization of the cytotoxic mechanism of multiwall carbon nanotubes and nano-onions on human skin fibroblast. Nano Lett 5:2448–2464

    Article  PubMed  CAS  Google Scholar 

  • Donaldson K, Aitken R, Tran L, Stone V, Duffin R, Forrest G, Alexander A (2006) Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol Sci 92:5–22

    Article  PubMed  CAS  Google Scholar 

  • Garlepp M, Leong C (1995) Biological and immunological aspects of malignant mesothelioma. Eur Respir J 8:643–650

    PubMed  CAS  Google Scholar 

  • Gooding JJ, Wibowon R, Liu JQ, Yang WR, Losic D, Orbons S, Mearns FJ, Shapter JG, Hibbert DB (2003) Protein electrochemistry using aligned carbon nanotube arrays. J Am Chem Soc 125:9006–9007

    Article  PubMed  CAS  Google Scholar 

  • Helland A, Wick P, Koehler A, Schmid K, Som C (2007) Reviewing the environmental and human health knowledge base of carbon nanotubes. Environ Health Perspect 115:1125–1131

    Article  PubMed  CAS  Google Scholar 

  • Hu H, Ni YC, Montana V, Haddon RC, Parpura V (2004) Chemically functionalized carbon nanotubes as substrates for neuronal growth. Nano Lett 4:507–511

    Article  PubMed  CAS  Google Scholar 

  • Hubbard R, Venn A, Lewis S, Britton J (2000) Lung cancer and cryptogenic fibrosing alveolitis. A population-based cohort study. Am J Respir Crit Care Med 161:5–8

    PubMed  CAS  Google Scholar 

  • IARC (1977) Monographs on the evaluation of carcinogenic risk to chemicals on man. Asbestos 14:1–106

    Google Scholar 

  • Ji SR, Liu C, Zhang B, Yang F, Xu J, Long J, Jin C, Fu DL, Ni QX, Yu XJ (2010) Carbon nanotubes in cancer diagnosis and therapy. Biochim Biophys Acta 1806:29–35

    PubMed  CAS  Google Scholar 

  • Kam NWS, Liu Z, Dai HJ (2005) Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing. J Am Chem Soc 127:12492–12493

    Article  PubMed  CAS  Google Scholar 

  • Karlsson HL, Cronholm P, Gustafsson J, Möller L (2008) Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol 21:1726–1732

    Article  PubMed  CAS  Google Scholar 

  • Kayat J, Gajbhiye V, Tekade RK, Jain NK (2010) Pulmonary toxicity of carbon nanotubes: a systematic report. Nanomedicine (Epub ahead of print)

  • Kim JS, Song KS, Joo HJ, Lee JH, Yu IJ (2010) Determination of cytotoxicity attributed to multiwall carbon nanotubes (MWCNT) in normal human embryonic lung cell (WI-38) line. J Toxicol Environ Health A 73:1521–1529

    Article  PubMed  CAS  Google Scholar 

  • Kim JS, Lee K, Lee YH, Cho HS, Kim KH, Choi KH, Lee SH, Song KS, Kang CS, Yu IJ (2011) Aspect ratio has no effect on genotoxicity of multi-wall carbon nanotubes. Arch Toxicol 85:775–786

    Article  PubMed  CAS  Google Scholar 

  • Knaapen AM, Borm PJA, Albrecht C, Schins RPF (2004) Inhaled particles and lung cancer. Part A: mechanisms. Int J Cancer 109:799–809

    Article  PubMed  CAS  Google Scholar 

  • Lam CW, James JT, McCluskey R, Arepalli S, Hunter RL (2006) A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Crit Rev Toxicol 36:189–217

    Article  PubMed  CAS  Google Scholar 

  • Lee JY, Kim JS, An KH, Lee K, Kim DY, Bae DJ, Lee YH (2005) Electrophoretic and dynamic light scattering in evaluating dispersion and size distribution of single-walled carbon nanotubes. J Nanosci Nanotechnol 5:1045–1049

    Article  PubMed  CAS  Google Scholar 

  • Leivonen S, Kähäri V-M (2007) Transforming growth factor-beta signaling in cancer invasion and metastasis. Int J Cancer 121:2119–2124

    Article  PubMed  CAS  Google Scholar 

  • Lin Y, Taylor S, Li H, Fernando SKA, Qu L, Wang W, Gu L, Zhou B, Sun YP (2004) Advances towards bioapplications of carbon nanotubes. J Mater Chem 14:527–541

    Article  CAS  Google Scholar 

  • Lindberg HK, Falck GC, Suhonen S, Vippola M, Vanhala E, Catalán J, Savolainen K, Norppa H (2009) Genotoxicity of nanomaterials: DNA damage and micronuclei induced by carbon nanotubes and graphite nanofibres in human bronchial epithelial cells in vitro. Toxicol Lett 186:166–173

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Sun XM, Nakayama-Ratchford N, Dai HJ (2007a) Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ACS Nano 1:50–56

    Article  PubMed  Google Scholar 

  • Liu Z, Winters M, Holodniy M, Dai HJ (2007b) SiRNA delivery into human T cells and primary cells with carbon-nanotube transporters. Angew Chem Int Ed 46:2023–2027

    Article  CAS  Google Scholar 

  • Manna SK, Ramesh GT (2005) Interleukin-8 induces nuclear transcription factor-kB through TRAF6-dependent pathway. J Biol Chem 280:7010–7021

    Article  PubMed  CAS  Google Scholar 

  • Mattson MP, Haddon RC, Rao AM (2000) Molecular functionalization of carbon nanotubes and use as substrates for neuronal growth. J Mol Neurosci 14:175–182

    Article  PubMed  CAS  Google Scholar 

  • Maynard AD, Baron PA, Foley M, Shvedova AA, Kisin ER, Castranova V (2004) Exposure of carbon nanotube material: aerosol release during the handling of unrefined single walled carbon nanotube material. J Toxicol Environ Health A 67:87–108

    Article  PubMed  CAS  Google Scholar 

  • McClellan RO (1994) Assessing health risks of synthetic vitreous fibers: an integrative approach. Reg Toxicol Pharmacol 20:S121–S134

    CAS  Google Scholar 

  • Mitchell LA, Gao J, Wal RV, Gigliotti A, Burchiel SW, McDonald JD (2007) Pulmonary and systemic immune response to inhaled multiwalled carbon nanotubes. Toxicol Sci 100:203–214

    Article  PubMed  CAS  Google Scholar 

  • Monteiro-Riviere NA, Nemanich RJ, Inman AO, Wang YY, Riviere JE (2005) Multi-walled carbon nanotube interactions with human epidermal keratinocytes. Toxicol Lett 155:377–384

    Article  PubMed  CAS  Google Scholar 

  • Murphy CJ (2002) Materials science: nanocubes and nanoboxes. Science 298:2139–2141

    Article  PubMed  CAS  Google Scholar 

  • Nymark P, Wikman H, Hienonen-Kempas T, Anttila S (2008) Molecular and genetic changes in asbestos-related lung cancer. Cancer Lett 265:1–15

    Article  PubMed  CAS  Google Scholar 

  • Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2:751–760

    Article  PubMed  CAS  Google Scholar 

  • Peters K, Unger RE, Gatti AM, Monari E (2004) Effects of nano-scaled particles on endothelial cell function in vitro: studies on viability, proliferation and inflammation. J Mater Sci Mater Med 15:321–325

    Article  PubMed  CAS  Google Scholar 

  • Pociask DA, Sime PJ, Brody AR (2004) Asbestos-derived reactive oxygen species activate TGF-[beta]1. Lab Invest 84:1013–1023

    Article  PubMed  CAS  Google Scholar 

  • Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WA, Seaton A, Stone V, Brown S, Macnee W, Donaldson K (2008) Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 3:423–428

    Article  PubMed  CAS  Google Scholar 

  • Poma A, Di Giorgio ML (2008) Toxicogenomics to improve comprehension of the mechanisms underlying responses of in vitro and in vivo systems to nanomaterials: a review. Curr Genomics 9:571–585

    Article  PubMed  CAS  Google Scholar 

  • Porter D, Sriram K, Wolfarth M, Jefferson A, Schwegler-Berry D, Andrew ME, Castranova V (2008) A biocompatible medium for nanoparticle dispersion. Nanotoxicology 2:144–154

    Google Scholar 

  • Pulskump K, Drabate S, Krug HF (2007) Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol Lett 168:58–74

    Article  Google Scholar 

  • Reddy AR, Reddy YN, Krishna DR, Himabindu V (2010) Multi wall carbon nanotubes induce oxidative stress and cytotoxicity in human embryonic kidney (HEK293) cells. Toxicology 272:11–16

    Article  PubMed  CAS  Google Scholar 

  • Sarkar S, Sharma C, Yog R, Periakaruppan A, JeJelowo O, Thomas R, Barrera EV, Rice-Ficth A, Wilson BL, Ramesh GT (2007) Analysis of stress responsive genes induced by single-walled carbon nanotubes in BJ Foreskin cells. J Nanosci Nanotechnol 7:584–592

    PubMed  CAS  Google Scholar 

  • Schnitzler GR, Cheung CL, Hafner JH, Saurin AJ, Kingston RE, Lieber CM (2001) Direct imaging of human SWI/SNF-remodeled mono- and polynucleosomes by atomic force microscopy employing carbon nanotube tips. Mol Cell Biol 21:8504–8511

    Article  PubMed  CAS  Google Scholar 

  • Shvedova AA, Kisin ER, Porter D, Schulte P, Kagan VE, Fadeel B, Castranova V (2009) Mechanisms of pulmonary toxicity and medical applications of carbon nanotubes: two faces of Janus? Pharmacol Ther 121:192–204

    Article  PubMed  CAS  Google Scholar 

  • Simeonova PP (2009) Update on carbon nanotubes toxicity. Nanomedicine 4:373–375

    Article  PubMed  CAS  Google Scholar 

  • Singh R, Pantarotto D, Lacerda L, Pastorin G, Klumpp C, Prato M, Bianco A, Kostarelos K (2006) Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc Natl Acad Sci U. S. A. 103:3357–3362

    Article  PubMed  CAS  Google Scholar 

  • Sinha N, Yeow JTW (2005) Carbon nanotubes for biomedical applications. IEEE Trans Nanobiosci 4:180–195

    Article  Google Scholar 

  • Tran CL, Hankin SM, Ross B, Aitken RJ, Jones AD, Donaldson K, Stone V, Tantra R (2008) An outline scoping study to determine whether high aspect ratio nanoparticles (HARN) should raise the same concerns as do asbestos fibres. IOM Report on Project CB0406, Edinburgh, UK

  • Upton A, Barrett J, Becklake MR, Burdett G, Chatfield E, Davis JMG, Gamsu G, Hoel DG, Langer A, Lee RJ, Lippman M, Mossman BT, Morse R, Nicholson W, Peto J, Samet J, Wagner JC (1991) Asbestos in public and commercial buildings: a literature review and synthesis of current knowledge. Cambridge, Mass: Health Effects Institute-Asbestos Research

  • Warshamana GS, Pociask DA, Sime P, Schwartz DA, Brody AR (2002) Susceptibility to asbestos-induced and transforming growth factor-{beta}1-induced fibroproliferative lung disease in two strains of mice. Am J Respir Cell Mol Biol 27:705–713

    PubMed  CAS  Google Scholar 

  • Zhu L, Chang DW, Dai L, Hong Y (2007) DNA damage induced by multiwalled carbon nanotubes in mouse embryonic stem cells. Nano Lett 7:3592–3597

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Nano R&D program through the National Research Foundation of Korea funded by the Korean Ministry of Education, Science and Technology (2010-0019156).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Il Je Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J.S., Song, K.S., Lee, J.K. et al. Toxicogenomic comparison of multi-wall carbon nanotubes (MWCNTs) and asbestos. Arch Toxicol 86, 553–562 (2012). https://doi.org/10.1007/s00204-011-0770-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-011-0770-6

Keywords

Navigation