Skip to main content

Advertisement

Log in

In vitro effects of silver nanoparticles on the mitochondrial respiratory chain

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Silver has been used for years in medicine; it has known antimicrobial properties. Additionally, silver has been used in water and air filtration to eliminate microorganisms, and, more recently, as a biocide to prevent infections in burns. In contact with the human body, nanoparticles can elicit a spectrum of tissue responses such as the generation of reactive oxygen species, decreased function of mitochondria and even cell death. Mitochondries are intracellular organelles that play a crucial role in ATP production. In the present work, we evaluate the in vitro effect of silver nanoparticles (AgN) on the activities of mitochondrial respiratory chain complexes from the brain, skeletal muscle, heart, and liver of rats. Our results demonstrated that AgN (10, 25, and 50 mg l−1) decreases the activity of mitochondrial respiratory chain complexes I, II, III, and IV from all tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alivisatos P (2004) The use of nanocrystals in biological detection. Nat Biotechnol 22:47–52

    Article  CAS  PubMed  Google Scholar 

  2. Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM (2005) Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev 105:1103–1169

    Article  CAS  PubMed  Google Scholar 

  3. Nie S, Xing Y, Kim GJ, Simons JW (2007) Nanotechnology applications in cancer. Annu Rev Biomed Eng 9:257–288

    Article  CAS  PubMed  Google Scholar 

  4. Wang MD, Shin DM, Simons JW, Nie S (2007) Nanotechnology for targeted cancer therapy. Expert Rev Anticancer Ther 7:833–837

    Article  CAS  PubMed  Google Scholar 

  5. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    Article  CAS  PubMed  Google Scholar 

  6. Lee KS, El-Sayed MA (2006) Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition. J Phys Chem B 110:19220–19225

    Article  CAS  PubMed  Google Scholar 

  7. Chen X, Schluesener HJ (2008) Nanosilver: a nanoproduct in medical application. Toxicol Lett 176:1–12

    Article  CAS  PubMed  Google Scholar 

  8. Nino-Martinez N, Martinez-Castanon GA, Aragon-Pina A, Martinez-Gutierrez F, Martinez-Mendoza JR, Ruiz F (2008) Nanotechnology 19:65711/1–65711/8

    Google Scholar 

  9. Alt V, Bechert T, Steinrücke P, Wagener M, Seidel P, Dingeldein E, Scheddin D, Domann E, Schnettler R (2004) An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials 25:4383–4391

    Article  CAS  PubMed  Google Scholar 

  10. Lee HY, Park HK, Lee YM, Kim K, Park SB (2007) A practical procedure for producing silver nanocoated fabric and its antibacterial evaluation for biomedical applications. Chem Commun 28:2959–2961

    Article  Google Scholar 

  11. Paula MMS, Franco CV, Baldin MC, Rodrigues L, Barichello T, Savi GD, Bellato LF, Fiori MA, Silva L (2009) Synthesis, characterization and antibacterial activity studies of poly-{styrene-acrylic acid} with silver nanoparticles. Mater Sci Eng C 29:647–650

    Article  CAS  Google Scholar 

  12. Chou WL, Yu DG, Yang MC (2005) The preparation and characterization of silver-loading cellulose acetate hollow fiber membrane for water treatment. Polym Adv Technol 16:600–607

    Article  CAS  Google Scholar 

  13. Silver S, Phung LT, Silver G (2006) Silver as biocides in burn and wound dressings and bacterial resistance to silver compounds. J Ind Microbiol Biotechnol 33:627–634

    Article  CAS  PubMed  Google Scholar 

  14. Bhattacharya R, Mukherjee P (2008) Biological properties of “naked” metal nanoparticles. Adv Drug Delivery Rev 60:1289–1306

    Article  CAS  Google Scholar 

  15. Chen HW, Su SF, Chien CT, Lin WH, Yu SL, Chou CC, Chen JJ, Yang PC (2006) Titanium dioxide nanoparticles induce emphysema-like lung injury in mice. FASEB J 20:2393–2395

    Article  CAS  PubMed  Google Scholar 

  16. Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ (2005) In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 19:975–983

    Article  CAS  PubMed  Google Scholar 

  17. Yacobi NR, Phuleria HC, Demaio L, Liang CH, Peng C, Sioutas C, Borok Z, Kim K, Crandall ED (2007) Nanoparticle effects on rat alveolar epithelial cell monolayer barrier properties. Toxicol In Vitro 21:1373–1381

    Article  CAS  PubMed  Google Scholar 

  18. Braydich-Stolle L, Hussain S, Schlager JJ, Hofmann MC (2005) In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci 88:412–419

    Article  CAS  PubMed  Google Scholar 

  19. Hussain SM, Javorina AK, Schrand AM, Duhart HM, Ali SF, Schlager JJ (2006) The interaction of manganese nanoparticles with PC-12 cells induces dopamine depletion. Toxicol Sci 92:456–463

    Article  CAS  PubMed  Google Scholar 

  20. Calabrese V, Scapagnini G, Giuffrida-Stella AM, Bates TE, Clark JB (2001) Mitochondrial involvement in brain function and dysfunction: relevance to aging, neurodegenerative disorders and longevity. Neurochem Res 26:739–764

    Article  CAS  PubMed  Google Scholar 

  21. Horn D, Barrientos A (2008) Mitochondrial copper metabolism and delivery to cytochrome c oxidase. IUBMB life 60:421–429

    Article  CAS  PubMed  Google Scholar 

  22. Gur RE, Resnick SM, Gur RC, Alavi A, Caroff S, Kushner M, Reivich M, Arch (1987) Regional brain function in schizophrenia. Gen Psychiatry 44:126–129

    CAS  Google Scholar 

  23. Rudiger A, Singer M (2007) Mechanisms of sepsis-induced cardiac dysfunction. Crit Care Med 35:1599–1608

    Article  PubMed  Google Scholar 

  24. Crouser ED (2004) Mitochondrial dysfunction in septic shock and multiple organ dysfunction syndrome. Mitochondrion 4:729–741

    Article  CAS  PubMed  Google Scholar 

  25. Mancuso C, Scapagini G, Curro D, Giuffrida Stella AM, De Marco C, Butterfield DA, Calabrese V (2007) Mitochondrial dysfunction, free radical generation and cellular stress response in neurodegenerative disorders. Front Biosci 12:1107–1123

    Article  CAS  PubMed  Google Scholar 

  26. Paula MMS, Costa CS, Baldin MC, Scaini G, Rezin GT, Segala K, Andrade VM, Franco CV, Streck EL (2009) In vitro effect of silver nanoparticles on creatine kinase activity. J Braz Chem Soc 20(8):1556–1560

    Article  CAS  Google Scholar 

  27. Jana NR, Gearheart L, Murphy CJ (2001) Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio. Chem Commun 7:617–618

    Article  Google Scholar 

  28. Murphy CJ, Jana NR (2002) Controlling the aspect ratio of inorganic nanorods and nanowires. Adv Mater 14:80–82

    Article  CAS  Google Scholar 

  29. Lowry OH, Rosebough NG, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  30. Cassina A, Radi R (1996) Differential inhibitory action of nitric oxide and peroxynitrite on mitochondrial electron transport. Arch Biochem Biophys 328:309–316

    Article  CAS  PubMed  Google Scholar 

  31. Fischer JC, Ruitenbeek W, Berden JA, Trijbels JM, Veerkamp JH, Stadhouders AM, Sengers RC, Janssen AJ (1985) Differential investigation of the capacity of succinate oxidation in human skeletal muscle. Clin Chim Acta 153:23–36

    Article  CAS  PubMed  Google Scholar 

  32. Rustin P, Chretien D, Bourgeron T, Gerard B, Rotig A, Saudubray JM, Munnich A (1994) Biochemical and molecular investigations in respiratory chain deficiencies. Clin Chim Acta 228:35–51

    Article  CAS  PubMed  Google Scholar 

  33. Bessman SP, Carpenter CL (1985) The creatine-creatine phosphate energy shuttle. Annu Rev Biochem 54:831–862

    Article  CAS  PubMed  Google Scholar 

  34. Wallimann T, Wyss M, Brdiczka D, Nicolay K, Eppenberger HM (1992) Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the ‘phosphocreatine circuit’ for cellular energy homeostasis. Biochem J 281:21

    CAS  PubMed  Google Scholar 

  35. Rex A, Schickert R, Fink H (2004) Antidepressant-like effect of nicotinamide adenine dinucleotide in the forced swim test in rats. Pharmacol Biochem Behav 77:303–307

    Article  CAS  PubMed  Google Scholar 

  36. Almofti MR, Ichikawa T, Yamashita K, Terada H, Shinohara Y (2003) Silver ion induces a cyclosporine A-insensitive permeability transition in rat liver mitochondria and release of apoptogenic cytochrome c. Biochem J 134:43–49

    Article  CAS  Google Scholar 

  37. Adam-Vizi V (2005) Production of reactive oxygen species in brain mitochondria: contribution by electron transport chain and non-electron transport chain sources. Antioxid Redox Signal 7:1140–1149

    Article  CAS  PubMed  Google Scholar 

  38. Navarro A, Boveris A (2007) The mitochondrial energy transduction system and the aging process. Am J Physiol Cell Physiol 292:670–686

    Article  Google Scholar 

  39. Rangachari PK, Matthews J (1985) Effect of Ag+ on isolated bullfrog gastric mucosa. Am J Physiol 248:443–449

    Google Scholar 

  40. Kone B, Kaleta M, Gullans S (1988) Silver ion (Ag+)-Induced increases in cell membrane K+ and Na+ permeability in the renal proximal tubule: reversal by thiol reagents. J Membr Biol 102:11–19

    Article  CAS  PubMed  Google Scholar 

  41. Chappell JB, Greviller GD (1954) Effect of silver ions on mitochondrial adenosine triphosphatase. Nature 174:930–931

    Article  CAS  PubMed  Google Scholar 

  42. AshaRani PV, Low Kah Mun G, Hande MP, Valiyaveettil S (2009) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3:279–290

    Article  CAS  PubMed  Google Scholar 

  43. Heales SJ, Bolaños JP, Stewart VC, Brookes PS, Land JM, Clark JB (1999) Nitric oxide, mitochondria and neurological disease. Biochim Biophys Acta 1410:215–228

    Article  CAS  PubMed  Google Scholar 

  44. Blass JP (2001) Brain metabolism and brain disease: is metabolic deficiency the proximate cause of Alzheimer dementia? J Neurosci Res 66:851–856

    Article  CAS  PubMed  Google Scholar 

  45. Schurr A (2002) Energy metabolism, stress hormones and neural recovery from cerebral ischemia/hypoxia. Neurochem Int 41:1–8

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Conselho Nacional de Pesquisa e Desenvolvimento (CNPq), Fundação de Apoio à Pesquisa Científica e Tecnológica do Estado de Santa Catarina (FAPESC), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and Universidade do Extremo Sul Catarinense (UNESC).

Conflicts of interest statement

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos Marques da Silva Paula.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costa, C.S., Ronconi, J.V.V., Daufenbach, J.F. et al. In vitro effects of silver nanoparticles on the mitochondrial respiratory chain. Mol Cell Biochem 342, 51–56 (2010). https://doi.org/10.1007/s11010-010-0467-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-010-0467-9

Keywords

Navigation