Skip to main content
Log in

Diversification of the Duplicated F3h Genes in Triticeae

  • Letter to the Editor
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

The F3h gene encodes the flavonoid synthesis enzyme flavanone 3-hydroxylase. Unlike most plant genomes, the bread wheat (Triticum aestivum L.) B genome has two, rather than just one F3h copy. The paralogous F3h-B2 sequence was isolated by PCR and shown to be transcribed, but its predicted polypeptide differed from the typical F3H sequence at a number of the conserved residues associated with its putative substrate-binding sites. The F3h-B2 promoter region was highly divergent from that of F3h-B1, and the transcriptional profiles of the two genes were distinct. Among a panel of 95 Triticeae accessions, representing 24 species, an F3h-2 copy was only detected within those carrying a B, S, G, or an R genome. Analysis of the coding sequence divergence suggested that a small segmental duplication occurred early in the evolution of the Triticeae tribe. The duplicated F3h copy appears to have acquired a novel function in the progenitor of the closely related B, G, and S genomes, as well as in the R genome. In other Triticeae genomes, the F3h-2 paralog may have been lost following pseudogenization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Altchul SF, Gish W, Miller W (1990) Basic local alignment search tool. J Biol 215:403–410

    Google Scholar 

  • Anderson OD, Chao S, Choi DW, Close TJ, Fenton RD, Han PS, Hsia CC, Kang Y, Lazo GR, Miller R, Rausch CJ, Seaton CL, Tong JC (2000) The structure and function of the expressed portion of the wheat genomes—20–45 DAP spike cDNA library. http://www.ncbi.nlm.nih.gov. Accessed 25 Nov 2011

  • Britsch L, Ruhnau-Brich B, Forkmann G (1992) Molecular cloning, sequence analysis, and in vitro expression of flavanone 3 beta-hydroxylase from Petunia hybrida. J Biol Chem 267:5380–5387

    PubMed  CAS  Google Scholar 

  • Britsch L, Dedio J, Saedker H, Forkmann G (1993) Molecular characterization of flavanone 3β-hydroxylases: consensus sequence, comparison with related enzymes and the role of conserved histidine residues. Eur J Biochem 217:745–754

    Article  PubMed  CAS  Google Scholar 

  • Cloutier S (2002) Wheat functional genomics—Glenlea developing seeds cDNA libraries. http://www.ncbi.nlm.nih.gov. Accessed 25 Nov 2011

  • Corpet F (1988) Multiple sequence alignment with hierarchical clustering. Nucl Acids Res 6:10881–10890

    Article  Google Scholar 

  • Davies K (1993) A cDNA clone for flavanone 3-hydroxylase from Malus. Plant Physiol 103:291

    Article  PubMed  CAS  Google Scholar 

  • Deboo GB, Albertsen MC, Taylor LP (1995) Flavanone 3-hydroxylase transcripts and flavonol accumulation are temporally coordinate in maize anthers. Plant J 7:703–713

    Article  PubMed  CAS  Google Scholar 

  • Devos KM et al (1993) Comparative RFLP maps of the homoeologous group-2 chromosomes of wheat, rye and barley. Theor Appl Genet 85:784–792

    CAS  Google Scholar 

  • Dobrovolskaya O, Boeuf C, Salse J, Pont C, Sourdille P, Bernard M, Salina E (2011) Microsatellite mapping of Ae. speltoides and map-based comparative analysis of the S, G, and B genomes of Triticeae species. Theor Appl Genet 123:1145–1157

    Article  PubMed  CAS  Google Scholar 

  • Endo TR, Gill BS (1996) The deletion stocks of common wheat. J Hered 87:295–307

    Article  CAS  Google Scholar 

  • Ganal M, Röder MS (2007) Microsatellite and SNP markers in wheat breeding. In: Varshney RK, Tuberosa R (eds) Genomics-assisted crop improvement. Vol. 2: genomics applications in crops. Springer, Dordrecht (The Netherlands), pp 1–24

    Chapter  Google Scholar 

  • Gaut BS, Morton BR, McCaig BC, Clegg MT (1996) Substitution rate comparisons between grasses and palms: synonymous rate differences at the nuclear gene Adh parallel rate differences at the plastid gene rbcL. Proc Natl Acad Sci USA 93:10274–10279

    Article  PubMed  CAS  Google Scholar 

  • Hedgcoth C, el-Shehawi AM, Wei P, Clarkson M, Tamalis D (2002) A chimeric open reading frame associated with cytoplasmic male sterility in alloplasmic wheat with Triticum timopheevi mitochondria is present in several Triticum and Aegilops species, barley, and rye. Curr Genet 41:357–365

    Article  PubMed  CAS  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27(1):297–300

    Article  PubMed  CAS  Google Scholar 

  • Himi E, Nisar A, Noda K (2005) Colour genes (R and Rc) for grain and coleoptile upregulate flavonoid biosynthesis genes in wheat. Genome 48:747–754

    Article  PubMed  CAS  Google Scholar 

  • Himi E, Maekawa M, Noda K (2011) Differential expression of three flavanone 3-hydroxylase (F3H) genes in grains and coleoptiles of wheat. Int J Plant Genomics. doi:10.1155/2011/369460

    PubMed  Google Scholar 

  • Kawaura K, Mochida K, Ogihara Y (2005) Expression profile of two storage-protein gene families in hexaploid wheat revealed by large-scale analysis of expressed sequence tags. Plant Physiol 139:1870–1880

    Article  PubMed  Google Scholar 

  • Khlestkina EK, Myint Than MH, Pestsova EG, Röder MS, Malyshev SV, Korzun V, Börner A (2004) Mapping of 99 new microsatellite-derived loci in Rye (Secale cereale L.) including 39 expressed sequencing tags. Theor Appl Genet 109:725–732

    Article  PubMed  CAS  Google Scholar 

  • Khlestkina EK, Röder MS, Salina EA (2008) Relationship between homoeologous regulatory and structural genes in allopolyploid genome—a case study in bread wheat. BMC Plant Biol 8:88

    Article  PubMed  Google Scholar 

  • Khlestkina EK, Tereschenko OYu, Salina EA (2009) Anthocyanin biosynthesis genes location and expression in wheat-rye hybrids. Mol Genet Genomics 282:475–485

    Article  PubMed  CAS  Google Scholar 

  • Khlestkina EK, Röder MS, Pshenichnikova TA, Börner A (2010) Functional diversity at Rc (red coleoptile) locus in wheat (Triticum aestivum L.). Mol Breed 25:125–132

    Article  CAS  Google Scholar 

  • Khlestkina EK, Salina EA, Matthies I, Leonova IN, Börner A, Röder MS (2011) Comparative molecular marker-based genetic mapping of flavanone 3-hydroxylase genes in wheat, rye and barley. Euphytica 179:333–341

    Article  CAS  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg I (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  PubMed  CAS  Google Scholar 

  • Lukačin R, Britsch L (1997) Identification of strictly conserved histidine and arginine residues as part of the active site in Petunia hybrida flavanone 3β-hydroxylase. Eur J Biochem 249:748–757

    Article  PubMed  Google Scholar 

  • Lukačin R, Gröning I, Pieper U, Matern U (2000) Site-directed mutagenesis of the active site serine290 in flavanone 3β-hydroxylase from Petunia hybrida. Eur J Biochem 267:853–860

    Article  PubMed  Google Scholar 

  • Martin C, Prescott A, Mackay S, Bartlett J, Vrijlandt E (1991) Control of anthocyanin biosynthesis in flowers of Antirrhinum majus. Plant J 1:37–49

    Article  PubMed  CAS  Google Scholar 

  • Matassi G, Sharp PM, Gautier C (1999) Chromosomal location effects on gene sequence evolution in mammals. Curr Biol 9:786–791

    Article  PubMed  CAS  Google Scholar 

  • Meldgaard M (1992) Expression of chalcone synthase, dihydroflavonol reductase, and flavonone-3-hydroxilase in mutants of barley deficient in anthocyanin and proanthocyanidin biosynthesis. Theor Appl Genet 83:695–706

    Article  CAS  Google Scholar 

  • Mochida K, Kawaura K, Shimosaka E, Kawakami N, Shin-I T, Kohara Y, Yamazaki Y, Ogihara Y (2006) Tissue expression map of a large number of expressed sequence tags and its application to in silico screening of stress response genes in common wheat. Mol Genet Genomics 276:304–312

    Article  PubMed  CAS  Google Scholar 

  • Ogihara Y, Sasaki T, Kohara Y, Shin-I T, Kawaura K, Mochida K (2007) Comprehensive analysis of wheat ESTs in response to aluminium treatments. http://www.ncbi.nlm.nih.gov. Accessed 25 Nov 2011

  • Ohyanagi H, Tanaka T, Sakai H, Shigemoto Y, Yamaguchi K, Habara T, Fujii Y, Antonio BA, Nagamura Y, Imanishi T, Ikeo K, Itoh T, Gojobori T, Sasaki T (2006) The rice annotation project database (RAP-DB): hub for Oryza sativa ssp. japonica genome information. Nucl Acids Res 34(Database issue):D741–D744

  • Pelletier MK, Shirley BW (1996) Analysis of flavanone 3-hydroxylase in Arabidopsis seedlings: coordinate regulation with chalcone synthase and chalcone isomerase. Plant Physiol 111:339–345

    Article  PubMed  CAS  Google Scholar 

  • Plaschke J, Ganal MW, Röder MS (1995) Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theor Appl Genet 91:1001–1007

    Google Scholar 

  • Ramakrishna W, Dubcovsky J, Park YJ, Busso C, Emberton J, SanMiguel P, Bennetzen JL (2002) Different types and rates of genome evolution detected by comparative sequence analysis of orthologous segments from four cereal genomes. Genetics 162:1389–1400

    PubMed  CAS  Google Scholar 

  • Rausher MD (2008) The evolution of flavonoids and their genes. In: Grotewold PE (ed) The science of flavonoids. Springer, NY, pp 175–211

    Google Scholar 

  • Rychlik W (2007) OLIGO 7 primer analysis software. In: Yuryev A (ed) Methods in molecular biology. Vol. 402: PCR primer design. Humana Press Inc, Totowa, pp 35–59

    Chapter  Google Scholar 

  • Salina EA, Leonova IN, Efremova TT, Röder MS (2006) Wheat genome structure: translocations during the course of polyploidization. Funct Integr Genomics 6:71–80

    Article  PubMed  CAS  Google Scholar 

  • Sears ER (1953) Nullisomic analysis in common wheat. Amer Nat 87:245–252

    Article  Google Scholar 

  • Sharma A, Punetha A, Grover A, Sundar D (2010) Insights into the key enzymes of secondary metabolites biosynthesis in Camellia sinensis. J Bioinform Seq Anal 2:53–68

    CAS  Google Scholar 

  • Shih CH, Chu H, Tang LK, Sakamoto W, Maekawa M, Chu IK, Wang M, Lo C (2008) Functional characterization of key structural genes in rice flavonoid biosynthesis. Planta 228:1043–1054

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed  CAS  Google Scholar 

  • Tingey SV, Powell W, Wolters P, Dolan M, Hainey C, Yuan Z, Miao G, Caraher N, Hanafey MK (2002) DuPont wheat cDNA sequence. http://www.ncbi.nlm.nih.gov. Accessed 25 Nov 2011

  • Wolfe KH, Sharp PM, Li W-H (1989a) Rates of synonymous substitution in plant nuclear genes. Mol Evol 29:208–211

    Article  CAS  Google Scholar 

  • Wolfe KH, Sharp PM, Li W-H (1989b) Mutation rates differ among regions of the mammalian genome. Nature 337:283–285

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Rosenberg HF, Nei M (1998) Positive Darwinian selection after gene duplication in primate ribonuclease genes. Proc Natl Acad Sci USA 95:3708–3713

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was partially supported by RFBR (Grant No. 12-04-33027), RAS (Molecular Biology Program), and a grant from the President of the Russian Federation (MD-2615.2013.4). The authors thank Ms Galina Generalova for technical assistance and Dr Robert Koebner (www.smartenglish.co.uk) for linguistic advice and valuable comments during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. K. Khlestkina.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 189 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khlestkina, E.K., Dobrovolskaya, O.B., Leonova, I.N. et al. Diversification of the Duplicated F3h Genes in Triticeae. J Mol Evol 76, 261–266 (2013). https://doi.org/10.1007/s00239-013-9554-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-013-9554-3

Keywords

Navigation