Skip to main content
Log in

Functional diversity at the Rc (red coleoptile) gene in bread wheat

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

The presence of the allele Rc-A1b on chromosome 7A specified the expression profile of the F3h-1 (encoding flavanone 3-hydroxylase) genes and anthocyanin pigmentation in coleoptiles of Russian bread wheat cultivar ‘Saratovskaya 29’. A quantitative RT-PCR analysis compared the temporal expression profile of F3h-A1, F3h-B1, and F3h-D1 in the coleoptiles of ‘Saratovskaya 29’ and the standard cytogenetic stock ‘Chinese Spring’ (‘Hope’ 7A), both of which carry Rc-A1b. There was no within-genotype variation for expression level of the F3h-1 homoeologues at any of the sampling times, but the expression profiles varied markedly between the two genotypes. This result suggested that there may be functional allelic diversity at Rc-A1, which affects the transcription of the F3h-1 genes in colored coleoptiles. Microsatellite-based genetic mapping was used to locate Rc-A1 along with the new loci Pc-A1 (purple culm), Plb-A1 (purple leaf blade), and Pls-A1 (purple leaf sheath) in a single cluster on the short arm of chromosome 7A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmed N, Maekawa M, Utsugi S, Himi E, Ablet H, Rikiishi K, Noda K (2003) Transient expression of anthocyanin in developing wheat coleoptile by maize c1 and B-peru regulatory genes for anthocyanin synthesis. Breed Sci 52:29–43

    Article  Google Scholar 

  • Ahmed N, Maekawa M, Utsugi S, Rikiishi K, Ahmad A, Noda K (2006) The wheat Rc gene for red coleoptile colour codes for a transcriptional activator of late anthocyanin biosynthesis genes. J Cereal Sci 44:54–58

    Article  CAS  Google Scholar 

  • Appleford NE, Evans DJ, Lenton JR, Gaskin P, Croker SJ, Devos KM, Phillips AL, Hedden P (2006) Function and transcript analysis of gibberellin-biosynthetic enzymes in wheat. Planta 223:568–582

    Article  CAS  PubMed  Google Scholar 

  • Arbuzova VS, Maystrenko OI, Popova OM (1998) Development of near-isogenic lines of the common wheat cultivar ‘Saratovskaya 29’. Cereal Res Com 26:39–46

    Google Scholar 

  • Bogdanova ED, Sarbaev AT, Makhmudova KK (2002) Resistance of common wheat to bunt. In: Proceedings of the research conference on genetics. Moscow, Russia, pp 43–44

  • Boss PK, Davies C, Robinson SP (1996) Expression of anthocyanin biosynthesis genes in red and white grapes. Plant Mol Biol 32:565–569

    Article  CAS  PubMed  Google Scholar 

  • Bottley A, Xia GM, Koebner RM (2006) Homoeologous gene silencing in hexaploid wheat. Plant J 47:897–906

    Article  CAS  PubMed  Google Scholar 

  • Capron A (1918) On a case of permanent variation in glume length of extracted parental types and the inheritance of purple color in the Triticum polonicum × T. eloboni. J Genet 7:259–280

    Article  Google Scholar 

  • Christie PJ, Alfenito MR, Walbot V (1994) Impact of low temperature stress on general phenylpropanoid and anthocyanin pathways: enhancement of transcript abundance and anthocyanin pigmentation in maize seedlings. Planta 194:541–549

    Article  CAS  Google Scholar 

  • Clark JA (1924) Segregation and correlated inheritance in crosses between Kota and Hard Federation wheats for rust and drought resistance. J Agric Res 29:1047

    Google Scholar 

  • Deboo GB, Albertsen MC, Taylor LP (1995) Flavanone 3-hydroxylase transcripts and flavonol accumulation are temporally coordinate in maize anthers. Plant J 7:703–713

    Article  CAS  PubMed  Google Scholar 

  • Dobrovolskaya OB, Arbuzova VS, Lohwasser U, Röder MS, Börner A (2006) Microsatellite mapping of complementary genes for purple grain colour in bread wheat (Triticum aestivum L.). Euphytica 150:355–364

    Article  CAS  Google Scholar 

  • Gaidalenok RF, Khrabrova MA, Litkovskaya NP, Kovaleva NM (1995) Development and use of lines with substituted chromosomes in Saratovskaya 29/Janetzkis Probat. EWAC Newsl (Proceedings of 9th EWAC conference, Gatersleben-Wernigerode) 9:128–131

  • Gale MD, Flavell RB (1971) The genetic control of anthocyanin biosythesis by homoeologous chromosomes in wheat. Genet Res Camb 18:237–244

    Article  Google Scholar 

  • Ganal M, Röder MS (2007) Microsatellite and SNP markers in wheat breeding. In: Varshney RK, Tuberosa R (eds) Genomics-assisted crop improvement. vol. 2: Genomics applications in crops. Springer, The Netherlands, pp 1–24

    Chapter  Google Scholar 

  • Giovanini MP, Puthoff DP, Nemacheck JA, Mittapalli O, Saltzmann KD, Ohm HW, Shukle RH, Williams CE (2006) Gene-for-gene defense of wheat against the Hessian fly lacks a classical oxidative burst. Mol Plant-Microbe Interact 19:1023–1033

    Article  CAS  PubMed  Google Scholar 

  • Gong Z, Yamazaki M, Sugiyama M, Tanaka Y, Saito K (1997) Cloning and molecular analysis of structural genes involved in anthocyanin biosynthesis and expressed in a forma-specific manner in Perilla frutescens. Plant Mol Biol 35:915–927

    Article  CAS  PubMed  Google Scholar 

  • Gould KS (2004) Nature’s swiss army knife: the diverse protective roles of anthocyanins in leaves. J Biomed Biotech 5:314–320

    Article  Google Scholar 

  • Goulden CH, Neatby KW, Welsh JN (1928) The inheritance of resistance to Puccinia graminis tritici in a cross between two varieties of Triticum vulgare. Phytopathology 18:627

    Google Scholar 

  • Gulyaeva ZB (1984) Localization of the genes for pubescence of the glumes and coloration of the auricles in the leaf sheath in winter wheat variety Ul’yanovka. Bull Appl Bot Genet Plant Breed 85:95–96 (In Russian)

    Google Scholar 

  • Himi E, Noda K (2004) Isolation and location of three homoeologous dihydroflavonol-4-reductase (DFR) genes of wheat and their tissue-dependent expression. J Exp Bot 55:365–375

    Article  CAS  PubMed  Google Scholar 

  • Himi E, Nisar A, Noda K (2005) Colour genes (R and Rc) for grain and coleoptile upregulate flavonoid biosynthesis genes in wheat. Genome 48:747–754

    Article  CAS  PubMed  Google Scholar 

  • Izdebski R (1992) Utilization of rye genetic resources—initial material selection. Hereditas 116:179–185

    Article  Google Scholar 

  • Jaakola L, Määttä K, Pirtillä AM, Törrönen R, Kärenlampi S, Hohtola A (2002) Expression of genes involved in anthocyanin biosynthesis in relation to anthocyanin, proanthocyanidin, and flavonol levels during bilberry fruit development. Plant Physiol 130:729–739

    Article  CAS  PubMed  Google Scholar 

  • Jha KK (1964) The association of a gene for purple coleoptile with chromosome 7D of common wheat. Can J Genet Cytol 6:370–372

    Google Scholar 

  • Khlestkina EK, Pestsova EG, Röder MS, Börner A (2002a) Molecular mapping, phenotypic expression and geographical distribution of genes determining anthocyanin pigmentation of coleoptiles in wheat (Triticum aestivum L.). Theor Appl Genet 104:632–637

    Article  CAS  PubMed  Google Scholar 

  • Khlestkina EK, Pestsova EG, Salina EA, Röder MS, Arbuzova VS, Koval SF, Börner A (2002b) Molecular mapping and tagging of wheat genes using RAPD, STS and SSR markers. Cell Mol Biol Letters 7:795–802

    CAS  Google Scholar 

  • Khlestkina EK, Röder MS, Salina EA (2008a) Relationship between homoeologous regulatory and structural genes in allopolyploid genome—a case study in bread wheat. BMC Plant Biology 8:88

    Article  PubMed  CAS  Google Scholar 

  • Khlestkina EK, Röder MS, Pshenichnikova TA, Simonov AV, Salina EA, Börner A (2008b) Genes for anthocyanin pigmentation in wheat: review and microsatellite-based mapping. In: Verrity JF, Abbington LE (eds) Chromosome mapping research developments. NOVA Science Publishers, USA, pp 155–175

    Google Scholar 

  • Khlestkina EK, Pshenichnikova TA, Röder MS, Börner A (2009a) Clustering anthocyanin pigmentation genes in wheat group 7 chromosomes. Cereal Res Com 37(3):391–398

    Article  CAS  Google Scholar 

  • Khlestkina EK, Röder MS, Börner A (2009b) Mapping genes controlling anthocyanin pigmentation on the glume and pericarp in tetraploid wheat (Triticum durum L.). Euphytica. doi: 10.1007/s10681-009-9994-4

  • Kihara H (1944) Discovery of the DD-analyser, one of the ancestors of Triticum vulgare. Agric Hort (Tokyo) 19:13–14

    Google Scholar 

  • Kihara H (1954) Origin of wheat. Wheat Inform Serv 1:35–42

    Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugenet 12:172–175

    Google Scholar 

  • Kuspira J, Unrau J (1958) Determination of the number and dominance relationships of genes on substituted chromosomes in common wheat Triticum aestivum L. Can J Plant Sci 38:119–205

    Article  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg I (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  CAS  PubMed  Google Scholar 

  • Laurie DA, Reymondie S (1991) High frequencies of fertilization and haploid seedling production in crosses between commercial hexaploid wheat varieties and maize. Plant Breed 106:182–189

    Article  Google Scholar 

  • Liu X, Bai J, Huang L, Zhu L, Liu X, Weng N, Reese JC, Harris M, Stuart JJ, Chen MS (2007) Gene expression of different wheat genotypes during attack by virulent and avirulent Hessian fly (Mayetiola destructor) larvae. J Chem Ecol 33:2171–2194

    Article  CAS  PubMed  Google Scholar 

  • Martin C, Prescott A, Mackay S, Bartlett J, Vrijlandt E (1991) Control of anthocyanin biosynthesis in flowers of Antirrhinum majus. Plant J 1:37–49

    Article  CAS  PubMed  Google Scholar 

  • Maystrenko OI (1992) The use of cytogenetic methods in ontogenesis study of common wheat. In: Zhakote AG (ed) Ontogenetics of higher plants. Kishinev, Shtiintsa, pp 98–114

  • McIntosh RA, Yamazak Y, Dubcovsky J, Rogers J, Morris C, Somers DJ, Appels R, Devos KM (2008) Catalogue of gene symbols for wheat. http://www.grs.nig.ac.jp/wheat/komugi/genes/

  • Melz G, Thiele V (1990) Chromosome locations of genes controlling ‘purple leaf base’ in rye and wheat. Euphytica 49:155–159

    Article  Google Scholar 

  • Morimoto R, Kosugi T, Nakamura C, Takumi S (2005) Intragenic diversity and functional conservation of the three homoeologous loci of the KN1-type homeobox gene Wknox1 in common wheat. Plant Mol Biol 57:907–924

    Article  CAS  PubMed  Google Scholar 

  • Nomura T, Ishihara A, Yanagita RC, Endo TR, Iwamura H (2005) Three genomes differentially contribute to the biosynthesis of benzoxazinones in hexaploid wheat. Proc Natl Acad Sci USA 102:16490–16495

    Article  CAS  PubMed  Google Scholar 

  • Plaschke J, Ganal MW, Röder MS (1995) Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theor Appl Genet 91:1001–1007

    Article  CAS  Google Scholar 

  • Pozolotina VN, Molchanova IV, Karavaeva EN, Mihkaylovskaya LN, Antonova EV, Karimullina EM (2007) Analysis of current state of terrestrial ecosystems in the East-Ural radioactive trace. The issues of the radiation safety (special issue ‘The East-Ural radioactive trace marks its 50 year anniversary’), pp 32–44 (in Russian)

  • Quattrocchio F, Wing JF, Leppen HTC, Mol JNM, Koes RE (1993) Regulatory genes controlling anthocyanin pigmentation are functionally conserved among plant species and have distinct sets of target genes. Plant Cell 5:1497–1512

    Article  CAS  PubMed  Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier M-H, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  Google Scholar 

  • Rowland GG, Kerber ER (1974) Telocentric mapping in hexaploid wheat of genes for leaf rust resistance and other characters derived from Aegilops squarrosa. Can J Genet Cytol 16:137–144

    Google Scholar 

  • Sears ER (1954) The aneuploids of common wheat. Univ Missouri Agric Exp Station Res Bull 572:1–59

    Google Scholar 

  • Shitsukawa N, Tahira C, Kassai K, Hirabayashi C, Shimizu T, Takumi S, Mochida K, Kawaura K, Ogihara Y, Murai K (2007) Genetic and epigenetic alteration among three homoeologous genes of a class E MADS box gene in hexaploid wheat. Plant Cell 19:1723–1737

    Article  CAS  PubMed  Google Scholar 

  • Stracke R, Ishihara H, Huep G, Barsch A, Mehrtens F, Niehaus K, Weisshaar B (2007) Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling. Plant J 50:660–677

    Article  CAS  PubMed  Google Scholar 

  • Sutka J (1977) The association of genes for purple coleoptile with chromosomes of the wheat variety Mironovskaya 808. Euphytica 26:475–479

    Article  Google Scholar 

Download references

Acknowledgments

We thank Renate Voss, Annette Marlow, and Marina Baklanova for their excellent technical assistance. The senior author was supported by the Russian Foundation for Basic Research (project No. 08-04-00368-a), the Russian Science Support Foundation, and the Deutsche Forschungsgemeinschaft (project No. BO 1423/9-1/551902).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. K. Khlestkina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khlestkina, E.K., Röder, M.S., Pshenichnikova, T.A. et al. Functional diversity at the Rc (red coleoptile) gene in bread wheat. Mol Breeding 25, 125–132 (2010). https://doi.org/10.1007/s11032-009-9312-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-009-9312-9

Keywords

Navigation