Skip to main content
Log in

Rates of synonymous substitution in plant nuclear genes

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

The rate of synonymous nucleotide substitution in nuclear genes of higher plants has been estimated. The rate varies among genes by a factor of up to two, in a manner that is not immediately explicable in terms of base composition or codon usage bias. The average rate, in both monocots and dicots, is about four times higher than that in chloroplast genes. This leads to an estimated absolute silent substitution rate of 6 × 10−9 substitutions per site per year that falls within the range of average rates (2−8 × 10−9) seen in different mammalian nuclear genomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brinkmann H, Martinez P, Quigley F, Martin W, Cerff R (1987) Endosymbiotic origin and codon bias of the nuclear gene for chloroplast glyceraldehyde-3-phosphate dehydrogenase from maize. J Mol Evol 26:320–328

    PubMed  Google Scholar 

  • Chao S, Sederoff R, Levings CS III (1984) Nucleotide sequence and evolution of the 18S ribosomal RNA gene in maize mitochondria. Nucleic Acids Res 12:6629–6644

    PubMed  Google Scholar 

  • Chen H-C, Wintz H, Weil J-H, Pillay DTN (1988) Nucleotide sequence of chloroplast CF1-ATPase ε-subunit and elongator tRNAMet genes fromArabidopsis thaliana. Nucleic Acids Res 16:10372

    PubMed  Google Scholar 

  • Chojecki J (1986) Identification and characterisation of a cDNA clone for cytosolic glyceraldehyde-3-phosphate dehydrogenase in barley. Carlsberg Res Commun 51:203–210

    Google Scholar 

  • Filipski J (1988) Why the rate of silent codon substitutions is variable within a vertebrate's genome. J Theor Biol 134:159–164

    PubMed  Google Scholar 

  • Good AG, Pelcher LE, Crosby WL (1988) Nucleotide sequence of a complete barley alcohol dehydrogenase 1 cDNA. Nucleic Acids Res 16:7182

    PubMed  Google Scholar 

  • Klee HJ, Muskopf YM, Gasser CS (1987) Cloning of anArabidopsis thaliana gene encoding 5-enolpyruvylshikimate-3-phosphate synthase: sequence analysis and manipulation to obtain glyphosate-tolerant plants. Mol Gen Genet 210:437–442

    Article  PubMed  Google Scholar 

  • Lee KY, Townsend J, Tepperman J, Black M, Chui CF, Mazur B, Dunsmuir P, Bedbrook J (1988) The molecular basis of sulfonylurea resistance in tobacco. EMBO J 7:1241–1248

    Google Scholar 

  • Li W-H, Wu C-I, Luo C-C (1985) A new method for estimating synonymous and nonsynonymous rates of nucleotide substitution considering the relative likelihood of nucleotide and codon changes. Mol Biol Evol 2:150–174

    PubMed  Google Scholar 

  • Li W-H, Tanimura M, Sharp PM (1987) An evaluation of the molecular clock hypothesis using mammalian DNA sequences. J Mol Evol 25:330–342

    PubMed  Google Scholar 

  • Maraña C, García-Olmedo F, Carbonero P (1988) Linked sucrose synthase genes in group-7 chromosomes in hexaploid wheat (Triticum aestivum L.). Gene 63:253–260

    Article  PubMed  Google Scholar 

  • Mazur BJ, Chui C-F, Smith JK (1987) Isolation and characterization of plant genes coding for acetolactate synthase, the target enzyme for two classes of herbicides. Plant Physiol 85: 1110–1117

    Google Scholar 

  • Neuhaus H (1989) Nucleotide sequence of the chloroplast genes for tRNAGln and the 4 kD K polypeptide of photosystem II from mustard (Sinapsis alba). Nucleic Acids Res 17:444

    PubMed  Google Scholar 

  • Niesbach-Klösgen U, Barzen E, Bernhardt J, Rohde W, Schwarz-Sommer Zs, Reif HJ, Weinand U, Saedler H (1987) Chalcone synthase genes in plants: a tool to study evolutionary relationships. J Mol Evol 26:213–225

    Article  Google Scholar 

  • Ochman H, Wilson AC (1987) Evolution in bacteria: evidence for a universal substitution rate in cellular genomes. J Mol Evol 26:74–86

    PubMed  Google Scholar 

  • Rohde W, Becker D, Salamini F (1988) Structural analysis of thewaxy locus fromHordeum vulgare. Nucleic Acids Res 16: 7185–7186

    PubMed  Google Scholar 

  • Salinas J, Matassi G, Montero LM, Bernardi G (1988) Compositional compartmentalization and compositional patterns in the nuclear genomes of plants. Nucleic Acids Res 16:4269–4285

    PubMed  Google Scholar 

  • Sharp PM, Li W-H (1987) The rate of synonymous substitution in enterobacterial genes is inversely related to codon usage bias. Mol Biol Evol 4:222–230

    PubMed  Google Scholar 

  • Sharp PM, Li W-H (1989) On the rate of DNA sequence evolution inDrosophila. J Mol Evol 28:398–402

    PubMed  Google Scholar 

  • Stebbins GL (1981) Coevolution of grasses and herbivores. Ann Mo Bot Gard 68:75–86

    Google Scholar 

  • Trick M, Dennis ES, Edwards KJR, Peacock WJ (1988) Molecular analysis of the alcohol dehydrogenase gene family of barley. Plant Mol Biol 11:147–160

    Article  Google Scholar 

  • Walfe KH (1989) Compilation of sequences of protein-coding genes in chloroplast DNA including cyanelle and cyanobacterial homologues. Plant Mol Biol Reporter 7:30–48

    Google Scholar 

  • Wolfe KH, Li W-H, Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci USA 84:9054–9058

    PubMed  Google Scholar 

  • Wolfe KH, Sharp PM, Li W-H (1989) Mutation rates differ among regions of the mammalian genome. Nature 337:283–285

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolfe, K.H., Sharp, P.M. & Li, WH. Rates of synonymous substitution in plant nuclear genes. J Mol Evol 29, 208–211 (1989). https://doi.org/10.1007/BF02100204

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02100204

Key words

Navigation