Skip to main content
Log in

Prognostic value of high-field proton magnetic resonance spectroscopy in patients presenting with clinically isolated syndromes suggestive of multiple sclerosis

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

The aim of this study was to determine the prognostic value of metabolic alterations in the normal-appearing white matter (NAWM) of patients presenting with clinically isolated syndromes (CIS) suggestive of multiple sclerosis (MS) with special regard to the prediction of conversion to definite MS.

Methods

Using a 3T whole-body MR system, a multisequence conventional MRI protocol and single-voxel proton MR spectroscopy (PRESS, repetition time 2000 ms, echo times 38 ms and 140 ms) of the parietal NAWM were performed in 25 patients presenting with CIS at baseline and in 20 controls. Absolute concentrations of N-acetyl-aspartate (tNAA), myo-inositol (Ins), choline (Cho) and creatine (tCr) as well as metabolite ratios were determined. Follow-up including neurological assessment and conventional MRI was performed 3–4 and 6–7 months after the initial event.

Results

Nine patients converted to definite MS during the follow-up period. Compared to controls, those patients who converted to MS also showed significantly lower tNAA concentrations in the NAWM (−13.4%, P = 0.002) whereas nonconverters (−6.5%, P = 0.052) did not. The Ins concentration was 20.2% higher in the converter group and 1.9% higher in the nonconverter group, but these differences did not reach significance. No significant differences could be observed for tCr and Cho in either patient group.

Conclusion

Axonal damage at baseline in patients presenting with CIS was more prominent in those who subsequently converted to definite MS in the short term follow-up, indicating that tNAA might be a sufficient prognostic marker for patients with a higher risk of conversion to early definite MS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Rovira Canellas A, Rovira Gols A, Rio Izquierdo J, Tintoré Subirana M, Montalban Gairin X (2007) Idiopathic inflammatory-demyelinating diseases of the central nervous system. Neuroradiology 49:393–409

    Article  PubMed  Google Scholar 

  2. Miller DH, Thompson AJ, Filippi M (2003) Magnetic resonance studies of abnormalities in the normal appearing white matter and grey matter in multiple sclerosis. J Neurol 250:1407–1419

    Article  PubMed  CAS  Google Scholar 

  3. Brex PA, Ciccarelli O, O’ Riordan JI, Sailer M, Thompson AJ, Miller DH (2002) A longitudinal study of abnormalities on MRI and disability from multiple sclerosis. N Engl J Med 346:158–164

    Article  PubMed  Google Scholar 

  4. Barkhof F, Filippi M, Miller DH et al (1997) Comparison of MRI criteria at first presentation to predict conversion to clinically definite multiple sclerosis. Brain 120:2059–2069

    Article  PubMed  Google Scholar 

  5. Tintoré M, Rovira A, Martinez MJ et al (2000) Isolated demyelinating syndromes: comparison of different MR imaging criteria to predict conversion to clinically definite multiple sclerosis. AJNR Am J Neuroradiol 21:702–706

    PubMed  Google Scholar 

  6. Minneboo A, Barkhof F, Polman CH et al (2004) Infratentorial lesions predict long-term disability in patients with initial findings suggestive of multiple sclerosis. Arch Neurol 61:217–221

    Article  PubMed  Google Scholar 

  7. Bitsch A, Bruhn H, Vougioukas V et al (1999) Inflammatory CNS demyelination: histopathologic correlation with in vivo quantitative proton MR spectroscopy. AJNR Am J Neuroradiol 20:1619–1627

    PubMed  CAS  Google Scholar 

  8. Simmons ML, Frodonza CG, Coyle JT (1991) Immunocytochemical localization of N-acetyl-aspartate with monoclonal antibodies. Neuroscience 45:37–45

    Article  PubMed  CAS  Google Scholar 

  9. Nakano M, Ueda H, Li J et al (1998) Measurement of regional N-acetylaspartate after transient global ischemia in gerbils with and without ischemic tolerance: an index of neuronal survival. Ann Neurol 44:334–340

    Article  PubMed  CAS  Google Scholar 

  10. Brand A, Richter-Landsberg C, Leibfritz D (1993) Multinuclear NMR studies on the energy metabolism of glial and neuronal cells. Dev Neurosci 15:289–298

    Article  PubMed  CAS  Google Scholar 

  11. De Stefano N, Narayanan S, Francis GS et al (2001) Evidence of axonal damage in the early stages of multiple sclerosis and its relevance to disability. Arch Neurol 58:65–70

    Article  PubMed  Google Scholar 

  12. De Stefano N, Matthews PM, Fu L et al (1998) Axonal damage correlates with disability in patients with relapsing-remitting multiple sclerosis. Results of a longitudinal magnetic resonance spectroscopy study. Brain 121:1469–1477

    Article  PubMed  Google Scholar 

  13. Chard DT, Griffin CM, McLean MA et al (2002) Brain metabolite changes in cortical grey and normal-appearing white matter in clinically early relapsing remitting multiple sclerosis. Brain 125:2342–2352

    Article  PubMed  CAS  Google Scholar 

  14. Kapeller P, McLean MA, Griffin CM et al (2001) Preliminary evidence for neuronal damage in cortical grey and normal appearing white matter in short duration relapsing-remitting multiple sclerosis: a quantitative MR spectroscopic imaging study. J Neurol 248:131–138

    Article  PubMed  CAS  Google Scholar 

  15. Vrenken H, Barkhof F, Uitdehaag BMJ, Castelijns JA, Polman CH, Pouwels PJW (2005) MR spectroscopic evidence of glial increase but not for neuro-axonal damage in MS normal-appearing white matter. Magn Reson Med 53:256–266

    Article  PubMed  CAS  Google Scholar 

  16. Srinivasan R, Sailasuta N, Hurd R, Nelson S, Pelletier D (2005) Evidence of elevated glutamate in multiple sclerosis using magnetic resonance spectroscopy at 3T. Brain 128:1016–1025

    Article  PubMed  Google Scholar 

  17. Tedeschi G, Bonavita S, McFarland HF, Richert N, Duyn JH, Frank JA (2002) Proton MR spectroscopic imaging in multiple sclerosis. Neuroradiology 44:37–42

    Article  PubMed  CAS  Google Scholar 

  18. Fernando KTM, McLean MA, Chard DT et al (2004) Elevated white matter myo-inositol in clinical isolated syndromes suggestive of multiple sclerosis. Brain 127:1361–1369

    Article  PubMed  CAS  Google Scholar 

  19. Polman CH, Reingold SC, Edan G et al (2005) Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria”. Ann Neurol 58:840–846

    Article  PubMed  Google Scholar 

  20. Kurtzke JF (1983) Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 33:1444–1452

    PubMed  CAS  Google Scholar 

  21. Wattjes MP, Lutterbey GG, Harzheim M et al (2006) Imaging of inflammatory lesions at 3.0 Tesla in patients with clinically isolated syndromes suggestive of multiple sclerosis: a comparison of fluid-attenuated inversion recovery with T2 turbo spin-echo. Eur Radiol 16:1494–1500

    Article  PubMed  Google Scholar 

  22. Simon JH, Li D, Traboulsee A et al (2006) Standardized MR imaging protocol for multiple sclerosis: consortium of MS centers consensus guidelines. AJNR Am J Neuroradiol 27:455–461

    PubMed  CAS  Google Scholar 

  23. Naressi A, Couturier C, Devos JM et al (2001) Java-based graphical user interface for the MRUI quantitation package. MAGMA 12:141–152

    Article  PubMed  CAS  Google Scholar 

  24. Vanhamme L, van den Boogaart A, van Huffel S (1997) Improved method for accurate and efficient quantification of MRS data with use of prior knowledge. J Magn Reson 129:35–43

    Article  PubMed  CAS  Google Scholar 

  25. Wattjes MP, Harzheim M, Lutterbey GG, Klotz L, Schild HH, Träber F (2007) Axonal damage but no increased glial cell activity in the normal-appearing white matter of patients with clinically isolated syndromes suggestive of multiple sclerosis using high field magnetic resonance spectroscopy. AJNR Am J Neuroradiol 28:1517–1522

    Article  PubMed  CAS  Google Scholar 

  26. Fernando KTM, Tozer DJ, Mizkiel KA et al (2005) Magnetization transfer histograms in clinically isolated syndromes suggestive of multiple sclerosis. Brain 128:2911–2925

    Article  PubMed  CAS  Google Scholar 

  27. Vrenken H, Rombouts SARB, Pouwels PJW, Barkhof F (2006) Voxel -based analysis of quantitative T1 maps demonstrates that multiple sclerosis acts throughout the normal-appearing white matter. AJNR Am J Neuroradiol 27:868–874

    PubMed  CAS  Google Scholar 

  28. Vrenken H, Pouwels PJW, Geurts JJG et al (2006) Altered diffusion tensor in multiple sclerosis normal-appearing brain tissue: cortical diffusion seem related to clinical deterioration. J Magn Reson Imaging 23:628–636

    Article  PubMed  Google Scholar 

  29. Nielsen JM, Korteweg T, Barkhof F, Uitdehaag BMJ, Polman CH (2005) Overdiagnosis of multiple sclerosis and magnetic resonance imaging criteria. Ann Neurol 58:781–783

    Article  PubMed  Google Scholar 

  30. Wattjes MP, Lutterbey GG, Harzheim M et al (2006) Higher sensitivity in the detection of inflammatory brain lesions in patients with clinically isolated syndromes suggestive of multiple sclerosis using high field MRI: an intraindividual comparison of 1.5T with 3.0T. Eur Radiol 16:2067–2073

    Article  PubMed  Google Scholar 

  31. Keiper MD, Grossmann RI, Hirsch JA et al (1998) MR identification of white matter abnormalities in multiple sclerosis: a comparison between 1.5T and 4T. AJNR Am J Neuroradiol 19:1489–1493

    PubMed  CAS  Google Scholar 

  32. Wattjes MP, Harzheim M, Kuhl CK et al (2006) Does high-field MRI have an influence on the classification of patients with clinically isolated syndromes according to current diagnostic magnetic resonance imaging criteria for multiple sclerosis? AJNR Am J Neuroradiol 27:1794–1798

    PubMed  CAS  Google Scholar 

  33. Träber F, Block W, Lamerichs R, Gieseke J, Schild HH (2004) 1H metabolite relaxation times at 3.0 Tesla: measurements of T1 and T2 values in normal brain and determination of regional differences in transverse relaxation. J Magn Reson Imaging 19:537–545

    Article  PubMed  Google Scholar 

  34. Srinivasan R, Vigneron D, Sailasuta N, Hurd R, Nelson S (2004) A comparative study of myoinositol quantification using LCmodel at 1.5 T and 3.0 T with 3 D 1H proton spectroscopic imaging of the human brain. Magn Reson Imaging 22:523–528

    Article  PubMed  CAS  Google Scholar 

  35. Tourbah A, Stievenart JL, Abanou A et al (1999) Normal-appearing white matter in optic neuritis and multiple sclerosis: a comparative proton spectroscopy study. Neuroradiology 41:738–743

    Article  PubMed  CAS  Google Scholar 

  36. Fernando KTM, Chard DT, McLean MA et al (2006) Metabolite changes in the white matter 3 years after a clinically isolated syndrome suggestive of multiple sclerosis. Mult Scler 12(S1):41

    Google Scholar 

  37. Pit D, Werner P, Raine C (2000) Glutamate excitotoxicity in a model of multiple sclerosis. Nat Med 6:67–70

    Article  CAS  Google Scholar 

  38. Cianfoni A, Niku S, Imbesi SG (2007) Metabolite findings in tumefactive demyelinating lesions utilizing short echo time proton magnetic resonance spectroscopy. AJNR Am J Neuroradiol 28:272–277

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all patients and control subjects who took part in this study. MPW was supported by the European Exchange Program provided by the European Society of Neuroradiology (ESNR).

Conflict of interest statement

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mike P. Wattjes.

Additional information

Conflict of interest statement

We declare that we have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wattjes, M.P., Harzheim, M., Lutterbey, G.G. et al. Prognostic value of high-field proton magnetic resonance spectroscopy in patients presenting with clinically isolated syndromes suggestive of multiple sclerosis. Neuroradiology 50, 123–129 (2008). https://doi.org/10.1007/s00234-007-0325-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-007-0325-y

Keywords

Navigation