Skip to main content

Advertisement

Log in

Ultra-High Field Proton MR Spectroscopy in Early-Stage Amyotrophic Lateral Sclerosis

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

An Erratum to this article was published on 18 May 2017

Abstract

A major hurdle in the development of effective treatments for amyotrophic lateral sclerosis (ALS) has been the lack of robust biomarkers for use as clinical trial endpoints. Neurochemical profiles obtained in vivo by high field proton magnetic resonance spectroscopy (1H-MRS) can potentially provide biomarkers of cerebral pathology in ALS. However, previous 1H-MRS studies in ALS have produced conflicting findings regarding alterations in the levels of neurochemical markers such as glutamate (Glu) and myo-inositol (mIns). Furthermore, very few studies have investigated the neurochemical abnormalities associated with ALS early in its course. In this study, we measured neurochemical profiles using single-voxel 1H-MRS at 7 T (T) and glutathione (GSH) levels using edited MRS at 3 T in 19 subjects with ALS who had relatively high functional status [ALS Functional Rating Scale-Revised (ALSFRS-R) mean ± SD = 39.8 ± 5.6] and 17 healthy controls. We observed significantly lower total N-acetylaspartate over mIns (tNAA/mIns) ratio in the motor cortex and pons of subjects with ALS versus healthy controls. No group differences were detected in GSH at 3 and 7 T. In subjects with ALS, the levels of tNAA, mIns, and Glu in the motor cortex were dependent on the extent of disease represented by El Escorial diagnostic subcategories. Specifically, combined probable/definite ALS had lower tNAA than possible ALS and controls (both p = 0.03), higher mIns than controls (p < 0.01), and lower Glu than possible ALS (p < 0.01). The effect of disease stage on MRS-measured metabolite levels may account for dissimilar findings among previous 1H-MRS studies in ALS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kiernan MC, Vucic S, Cheah BC, Turner MR, Eisen A, Hardiman O, Burrell JR, Zoing MC (2011) Amyotrophic lateral sclerosis. Lancet 377(9769):942–955

    Article  CAS  PubMed  Google Scholar 

  2. Bensimon G, Lacomblez L, Meininger V (1994) A controlled trial of riluzole in amyotrophic lateral sclerosis. ALS/riluzole study group. N Engl J Med 330(9):585–591

    Article  CAS  PubMed  Google Scholar 

  3. Turner MR, Kiernan MC, Leigh PN, Talbot K (2009) Biomarkers in amyotrophic lateral sclerosis. Lancet Neurol 8(1):94–109

    Article  CAS  PubMed  Google Scholar 

  4. Turner MR, Verstraete E (2015) What does imaging reveal about the pathology of amyotrophic lateral sclerosis? Curr Neurol Neurosci Rep 15(7):45

    Article  PubMed  PubMed Central  Google Scholar 

  5. Foerster BR, Pomper MG, Callaghan BC, Petrou M, Edden RA, Mohamed MA, Welsh RC, Carlos RC, Barker PB, Feldman EL (2013) An imbalance between excitatory and inhibitory neurotransmitters in amyotrophic lateral sclerosis revealed by use of 3-T proton magnetic resonance spectroscopy. JAMA Neurol 70(8):1009–1016

    Article  PubMed  PubMed Central  Google Scholar 

  6. Gredal O, Rosenbaum S, Topp S, Karlsborg M, Strange P, Werdelin L (1997) Quantification of brain metabolites in amyotrophic lateral sclerosis by localized proton magnetic resonance spectroscopy. Neurology 48(4):878–881

    Article  CAS  PubMed  Google Scholar 

  7. Unrath A, Ludolph AC, Kassubek J (2007) Brain metabolites in definite amyotrophic lateral sclerosis. A longitudinal proton magnetic resonance spectroscopy study. J Neurol 254(8):1099–1106

    Article  CAS  PubMed  Google Scholar 

  8. Kalra S, Hanstock CC, Martin WR, Allen PS, Johnston WS (2006) Detection of cerebral degeneration in amyotrophic lateral sclerosis using high-field magnetic resonance spectroscopy. Arch Neurol 63(8):1144–1148

    Article  PubMed  Google Scholar 

  9. Bowen BC, Pattany PM, Bradley WG, Murdoch JB, Rotta F, Younis AA, Duncan RC, Quencer RM (2000) MR imaging and localized proton spectroscopy of the precentral gyrus in amyotrophic lateral sclerosis. AJNR Am J Neuroradiol 21(4):647–658

    CAS  PubMed  Google Scholar 

  10. Han J, Ma L (2010) Study of the features of proton MR spectroscopy (1H-MRS) on amyotrophic lateral sclerosis. J Magn Reson Imaging 31(2):305–308

    Article  PubMed  Google Scholar 

  11. Weiduschat N, Mao X, Hupf J, Armstrong N, Kang G, Lange DJ, Mitsumoto H, Shungu DC (2014) Motor cortex glutathione deficit in ALS measured in vivo with the J-editing technique. Neurosci Lett 570:102–107

    Article  CAS  PubMed  Google Scholar 

  12. Kalra S, Seres P, Choi C (2013) In vivo quantification of excitatory and inhibitory neurotransmitters in amyotrophic lateral sclerosis. In Proceedings of the 21st Annual Meeting of the International Society for Magnetic Resonance in Medicine, Salt Lake City, p 1017

  13. Barber SC, Shaw PJ (2010) Oxidative stress in ALS: key role in motor neuron injury and therapeutic target. Free Radic Biol Med 48(5):629–641

    Article  CAS  PubMed  Google Scholar 

  14. Bae JS, Simon NG, Menon P, Vucic S, Kiernan MC (2013) The puzzling case of hyperexcitability in amyotrophic lateral sclerosis. J Clin Neurol 9(2):65–74

    Article  PubMed  PubMed Central  Google Scholar 

  15. Tkáč I, Öz G, Adriany G, Ugurbil K, Gruetter R (2009) In vivo 1H NMR spectroscopy of the human brain at high magnetic fields: metabolite quantification at 4 T vs. 7 T. Magn Reson Med 62(4):868–879

    Article  PubMed  PubMed Central  Google Scholar 

  16. Terpstra M, Cheong I, Lyu T, Deelchand DK, Emir UE, Bednarik P, Eberly LE, Öz G (2016) Test–retest reproducibility of neurochemical profiles with short-echo, single-voxel MR spectroscopy at 3 T and 7 T. Magn Reson Med 76(4):1083–1091

    Article  PubMed  Google Scholar 

  17. van de Bank BL, Emir UE, Boer VO, van Asten JJ, Maas MC, Wijnen JP, Kan HE, Öz G, Klomp DW, Scheenen TW (2015) Multi-center reproducibility of neurochemical profiles in the human brain at 7 T. NMR Biomed 28(3):306–316

    Article  PubMed  PubMed Central  Google Scholar 

  18. Smith MC (1960) Nerve fibre degeneration in the brain in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 23(4):269–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Udaka F, Kameyama M, Tomonaga M (1986) Degeneration of Betz cells in motor neuron disease. A Golgi study. Acta Neuropathol 70(3–4):289–295

    Article  CAS  PubMed  Google Scholar 

  20. Brooks BR, Miller RG, Swash M, Munsat TL, World Federation of Neurology Research Group on Motor Neuron Diseases (2000) El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 1(5):293–299

    Article  CAS  PubMed  Google Scholar 

  21. Cedarbaum JM, Stambler N, Malta E, Fuller C, Hilt D, Thurmond B, Nakanishi A (1999) The ALSFRS-R: a revised ALS functional rating scale that incorporates assessments of respiratory function. BDNF ALS study group (phase III). J Neurol Sci 169(1–2):13–21

    Article  CAS  PubMed  Google Scholar 

  22. Adriany G, Van de Moortele PF, Ritter J, Moeller S, Auerbach EJ, Akgun C, Snyder CJ, Vaughan T, Ugurbil K (2008) A geometrically adjustable 16-channel transmit/receive transmission line array for improved RF efficiency and parallel imaging performance at 7 T. Magn Reson Med 59(3):590–597

    Article  PubMed  Google Scholar 

  23. Emir UE, Auerbach EJ, Van De Moortele PF, Marjańska M, Ugurbil K, Terpstra M, Tkáč I, Öz G (2012) Regional neurochemical profiles in the human brain measured by 1H MRS at 7 T using local B1 shimming. NMR Biomed 25(1):152–160

    Article  CAS  PubMed  Google Scholar 

  24. Gruetter R, Tkáč I (2000) Field mapping without reference scan using asymmetric echo-planar techniques. Magn Reson Med 43(2):319–323

    Article  CAS  PubMed  Google Scholar 

  25. Öz G, Tkáč I (2011) Short-echo, single-shot, full-intensity proton magnetic resonance spectroscopy for neurochemical profiling at 4 T: validation in the cerebellum and brainstem. Magn Reson Med 65(4):901–910

    Article  PubMed  Google Scholar 

  26. Ernst T KR, Ross BD (1993) Absolute quantitation of water and metabolites in the human brain. I. Compartments and water. J Magn Reson 102(1):1–8

    Article  CAS  Google Scholar 

  27. Mescher M, Merkle H, Kirsch J, Garwood M, Gruetter R (1998) Simultaneous in vivo spectral editing and water suppression. NMR Biomed 11(6):266–272

    Article  CAS  PubMed  Google Scholar 

  28. Marjańska M, Lehericy S, Valabregue R, Popa T, Worbe Y, Russo M, Auerbach EJ, Grabli D, Bonnet C, Gallea C, Coudert M, Yahia-Cherif L, Vidailhet M, Meunier S (2013) Brain dynamic neurochemical changes in dystonic patients: a magnetic resonance spectroscopy study. Mov Disord 28(2):201–209

    Article  PubMed  Google Scholar 

  29. Deelchand DK, Adanyeguh IM, Emir UE, Nguyen TM, Valabregue R, Henry PG, Mochel F, Öz G (2015) Two-site reproducibility of cerebellar and brainstem neurochemical profiles with short-echo, single-voxel MRS at 3 T. Magn Reson Med 73(5):1718–1725

    Article  PubMed  Google Scholar 

  30. Provencher SW (1993) Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 30(6):672–679

    Article  CAS  PubMed  Google Scholar 

  31. Deelchand DK, Henry PG, Ugurbil K, Marjańska M (2012) Measurement of transverse relaxation times of J-coupled metabolites in the human visual cortex at 4 T. Magn Reson Med 67(4):891–897

    Article  CAS  PubMed  Google Scholar 

  32. Govindaraju V, Young K, Maudsley AA (2000) Proton NMR chemical shifts and coupling constants for brain metabolites. NMR Biomed 13(3):129–153

    Article  CAS  PubMed  Google Scholar 

  33. Tkáč I (2008) Refinement of simulated basis set for LCModel analysis. In Proceedings of the 16th Annual Meeting of the International Society for Magnetic Resonance in Medicine, Toronto, p 1624

  34. Schaller B, Xin L, Gruetter R (2014) Is the macromolecule signal tissue-specific in healthy human brain? A 1H MRS study at 7 T in the occipital lobe. Magn Reson Med 72(4):934–940

    Article  CAS  PubMed  Google Scholar 

  35. Siegel GJ (1999) Basic neurochemistry: molecular, cellular, and medical aspects, 6th edn. Lippincott-Raven Publishers, Philadelphia

    Google Scholar 

  36. Emir UE, Deelchand D, Henry PG, Terpstra M (2011) Noninvasive quantification of T2 and concentrations of ascorbate and glutathione in the human brain from the same double-edited spectra. NMR Biomed 24(3):263–269

    Article  CAS  PubMed  Google Scholar 

  37. Bednarik P, Moheet A, Deelchand DK, Emir UE, Eberly LE, Bares M, Seaquist ER, Öz G (2015) Feasibility and reproducibility of neurochemical profile quantification in the human hippocampus at 3 T. NMR Biomed 28(6):685–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rooney WD, Johnson G, Li X, Cohen ER, Kim SG, Ugurbil K, Springer CS Jr (2007) Magnetic field and tissue dependencies of human brain longitudinal 1H2O relaxation in vivo. Magn Reson Med 57(2):308–318

    Article  CAS  PubMed  Google Scholar 

  39. Wansapura JP, Holland SK, Dunn RS, Ball WS Jr (1999) NMR relaxation times in the human brain at 3.0 T. J Magn Reson Imaging 9(4):531–538

    Article  CAS  PubMed  Google Scholar 

  40. Holm S (1979) A simple sequentially rejective Bonferroni test procedure. Scand J Stat 6:65–70

    Google Scholar 

  41. Mitsumoto H, Ulug AM, Pullman SL, Gooch CL, Chan S, Tang MX, Mao X, Hays AP, Floyd AG, Battista V, Montes J, Hayes S, Dashnaw S, Kaufmann P, Gordon PH, Hirsch J, Levin B, Rowland LP, Shungu DC (2007) Quantitative objective markers for upper and lower motor neuron dysfunction in ALS. Neurology 68(17):1402–1410

    Article  CAS  PubMed  Google Scholar 

  42. Atassi N, Triantanfyllou C, Keil B, Lawson R, Kaplan L, Dheel C, Murphy A, Berry J, Salibi N, Seethamraju R, Rosen B, Cudkowicz M, Ratai E (2013) Ultra high-field (7 T) magnetic resonance spectroscopy (MRS) in people with amyotrophic lateral sclerosis (ALS). In Proceedings of the 21st Annual Meeting of the International Society for Magnetic Resonance in Medicine, Salt Lake City, p 1018

  43. Emir UE, Tuite PJ, Öz G (2012) Elevated pontine and putamenal GABA levels in mild-moderate Parkinson disease detected by 7 T proton MRS. PLoS ONE 7(1):e30918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ratai E, Kok T, Wiggins C, Wiggins G, Grant E, Gagoski B, O’Neill G, Adalsteinsson E, Eichler F (2008) Seven-Tesla proton magnetic resonance spectroscopic imaging in adult X-linked adrenoleukodystrophy. Arch Neurol 65(11):1488–1494

    Article  PubMed  PubMed Central  Google Scholar 

  45. Unschuld PG, Edden RA, Carass A, Liu X, Shanahan M, Wang X, Oishi K, Brandt J, Bassett SS, Redgrave GW, Margolis RL, van Zijl PC, Barker PB, Ross CA (2012) Brain metabolite alterations and cognitive dysfunction in early Huntington’s disease. Mov Disord 27(7):895–902

    Article  PubMed  PubMed Central  Google Scholar 

  46. Brandt AS, Unschuld PG, Pradhan S, Lim IA, Churchill G, Harris AD, Hua J, Barker PB, Ross CA, van Zijl PC, Edden RA, Margolis RL (2016) Age-related changes in anterior cingulate cortex glutamate in schizophrenia: A 1H MRS study at 7 T. Schizophr Res 172(1–3):101–105

    Article  PubMed  PubMed Central  Google Scholar 

  47. van den Bogaard SJ, Dumas EM, Teeuwisse WM, Kan HE, Webb A, van Buchem MA, Roos RA, van der Grond J (2014) Longitudinal metabolite changes in Huntington’s disease during disease onset. J Huntingt Dis 3(4):377–386

    Google Scholar 

  48. Atassi N, Xu M, Triantanfyllou C, Keil B, Long C, Lawson R, Cernasov P, Ratti E, Paganoni S, Salibi N, Seethamraju R, Rosen B, Cudkowicz M, Ratai E (2016) Biochemical characteristics in amyotrophic lateral sclerosis detected by 7 T MR spectroscopy. In Proceedings of the 24th Annual Meeting of the International Society for Magnetic Resonance in Medicine, Singapore, p 2408

  49. Rule RR, Suhy J, Schuff N, Gelinas DF, Miller RG, Weiner MW (2004) Reduced NAA in motor and non-motor brain regions in amyotrophic lateral sclerosis: a cross-sectional and longitudinal study. Amyotroph Lateral Scler Other Motor Neuron Disord 5(3):141–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. van der Graaff MM, Lavini C, Akkerman EM, Majoie Ch B, Nederveen AJ, Zwinderman AH, Brugman F, van den Berg LH, de Jong JM, de Visser M (2010) MR spectroscopy findings in early stages of motor neuron disease. AJNR Am J Neuroradiol 31(10):1799–1806

    Article  PubMed  Google Scholar 

  51. Murray ME, Przybelski SA, Lesnick TG, Liesinger AM, Spychalla A, Zhang B, Gunter JL, Parisi JE, Boeve BF, Knopman DS, Petersen RC, Jack CR Jr, Dickson DW, Kantarci K (2014) Early Alzheimer’s disease neuropathology detected by proton MR spectroscopy. J Neurosci 34(49):16247–16255

    Article  PubMed  PubMed Central  Google Scholar 

  52. Tsai GC, Stauch-Slusher B, Sim L, Hedreen JC, Rothstein JD, Kuncl R, Coyle JT (1991) Reductions in acidic amino acids and N-acetylaspartylglutamate in amyotrophic lateral sclerosis CNS. Brain Res 556(1):151–156

    Article  CAS  PubMed  Google Scholar 

  53. Brand A, Richter-Landsberg C, Leibfritz D (1993) Multinuclear NMR studies on the energy metabolism of glial and neuronal cells. Dev Neurosci 15(3–5):289–298

    CAS  PubMed  Google Scholar 

  54. Glanville NT, Byers DM, Cook HW, Spence MW, Palmer FB (1989) Differences in the metabolism of inositol and phosphoinositides by cultured cells of neuronal and glial origin. Biochim Biophys Acta 1004(2):169–179

    Article  CAS  PubMed  Google Scholar 

  55. Voevodskaya O, Sundgren PC, Strandberg O, Zetterberg H, Minthon L, Blennow K, Wahlund LO, Westman E, Hansson O, Swedish BioFINDER study group (2016) Myo-inositol changes precede amyloid pathology and relate to APOE genotype in Alzheimer disease. Neurology 86(19):1754–1761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sturrock A, Laule C, Wyper K, Milner RA, Decolongon J, Dar Santos R, Coleman AJ, Carter K, Creighton S, Bechtel N, Bohlen S, Reilmann R, Johnson HJ, Hayden MR, Tabrizi SJ, Mackay AL, Leavitt BR (2015) A longitudinal study of magnetic resonance spectroscopy Huntington’s disease biomarkers. Mov Disord 30(3):393–401

    Article  CAS  PubMed  Google Scholar 

  57. Iltis I, Hutter D, Bushara KO, Clark HB, Gross M, Eberly LE, Gomez CM, Öz G (2010) 1H MR spectroscopy in Friedreich’s ataxia and ataxia with oculomotor apraxia type 2. Brain Res 1358:200–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Öz G, Hutter D, Tkáč I, Clark HB, Gross MD, Jiang H, Eberly LE, Bushara KO, Gomez CM (2010) Neurochemical alterations in spinocerebellar ataxia type 1 and their correlations with clinical status. Mov Disord 25(9):1253–1261

    Article  PubMed  PubMed Central  Google Scholar 

  59. Brettschneider J, Toledo JB, Van Deerlin VM, Elman L, McCluskey L, Lee VM, Trojanowski JQ (2012) Microglial activation correlates with disease progression and upper motor neuron clinical symptoms in amyotrophic lateral sclerosis. PLoS ONE 7(6):e39216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Alshikho MJ, Zürcher NR, Loggia ML, Cernasov P, Chonde DB, Izquierdo Garcia D, Yasek JE, Akeju O, Catana C, Rosen BR, Cudkowicz ME, Hooker JM, Atassi N (2016) Glial activation colocalizes with structural abnormalities in amyotrophic lateral sclerosis. Neurology 87(24):2554–2561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lavisse S, Guillermier M, Herard AS, Petit F, Delahaye M, Van Camp N, Ben Haim L, Lebon V, Remy P, Dolle F, Delzescaux T, Bonvento G, Hantraye P, Escartin C (2012) Reactive astrocytes overexpress TSPO and are detected by TSPO positron emission tomography imaging. J Neurosci 32(32):10809–10818

    Article  CAS  PubMed  Google Scholar 

  62. Zürcher NR, Loggia ML, Lawson R, Chonde DB, Izquierdo-Garcia D, Yasek JE, Akeju O, Catana C, Rosen BR, Cudkowicz ME, Hooker JM, Atassi N (2015) Increased in vivo glial activation in patients with amyotrophic lateral sclerosis: assessed with [11C]-PBR28. Neuroimage 7:409–14

    Article  PubMed  PubMed Central  Google Scholar 

  63. Ratai E, Alshikho M, Zürcher N, Loggia M, Cernasov P, Fish J, Seth R, Paganoni S, Rosen B, Cudkowicz M, Hooker J, Atassi N (2016) Glial activation measured by [11C]-PBR28 PET correlates with 1H-MRS brain metabolites in amyotrophic lateral sclerosis. 27th international symposium on ALS/MND, Dublin, p 60

Download references

Acknowledgements

We thank the research coordinators Susan Rolandelli, Valerie Ferment, and Pamela Droberg, and Georgios Manousakis, M.D., and Gaurav Guliani, M.D., at the University of Minnesota and Hennepin County Medical Center ALS Clinics for their help in the recruitment of human subjects, and Edward J. Auerbach, Ph.D., for the implementation of MEGA-PRESS and FASTMAP on the Siemens platforms. This work was supported by the Bob Allison Ataxia Research Center, the University of Minnesota Foundation, and the National Institute of Neurological Disorders and Stroke (NINDS) Grant R01 NS080816. The Center for Magnetic Resonance Research is supported by the National Institute of Biomedical Imaging and Bioengineering (NIBIB) grant P41 EB015894 and the Institutional Center Cores for Advanced Neuroimaging Award P30 NS076408. Research reported in this publication was also supported by the National Center for Advancing Translational Sciences of the National Institutes of Health Award Number UL1TR000114. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian Cheong.

Ethics declarations

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Additional information

The original version of this article was revised: The presentation of Table 1 was incorrect. This has been corrected in this version.

An erratum to this article is available at http://dx.doi.org/10.1007/s11064-017-2302-0.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheong, I., Marjańska, M., Deelchand, D.K. et al. Ultra-High Field Proton MR Spectroscopy in Early-Stage Amyotrophic Lateral Sclerosis. Neurochem Res 42, 1833–1844 (2017). https://doi.org/10.1007/s11064-017-2248-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-017-2248-2

Keywords

Navigation