Skip to main content
Log in

Bamboo nanofiber preparation by HCW and grinding treatment and its application for nanocomposite

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

A new approach to prepare cellulose nanofiber was attempted using the combined method of hot-compressed water (HCW) treatment and disk milling. The HCW treatment was effective in loosening the cell wall structure and enhancing fibrillation by disk milling. The fibrillated products showed fine fibrous morphology at the nanometer scale. Filtration time and specific surface area were measured as criteria of the degree of fibrillation, and both these values were increased in nanofibers obtained by disk milling after HCW treatment. The obtained nanofiber-reinforced polyurethane composite was prepared, and its tensile properties were drastically improved by the increased nanofiber content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 8:3276–3278

    Article  PubMed  CAS  Google Scholar 

  • Ando H, Sakaki T, Kokusho T, Shibata M, Uemura Y, Hatate Y (2000) Decomposition behavior of plant biomass in hot-compressed water. Ind Eng Chem Res 39:3688–3693

    Article  CAS  Google Scholar 

  • Awano T, Takabe K, Fujita M, Daniel G (2000) Deposition of glucuronoxylans on the secondary cell wall of Japanese beech as observed by immuno-scanning electron microscopy. Protoplasma 212:72–79

    Article  CAS  Google Scholar 

  • Azeredo HMC, Mattoso LHC, Wood D, Williams TG, Avena-Bustillos RJ, McHugh TH (2009) Nanocomposite edible films from mango puree reinforced with cellulose nanofibers. J Food Sci 74(5):31–35

    Article  Google Scholar 

  • Bhatnagar A, Sain M (2005) Processing of cellulose nanofiber-reinforced composites. J Reinf Plast Compos 24(12):1259–1268

    Article  CAS  Google Scholar 

  • Cao X, Chen Y, Chang PR, Muir AD, Falk G (2000) Starch-based nanocomposites reinforced with flax cellulose nanocrystals. Polym Lett 2(7):502–510

    Google Scholar 

  • Chakraborty A, Sain M, Kortschot M (2005) Cellulose micriofibrils: a novel method of preparation using high shear refining and cryocrushing. Holzforschung 59:102–107

    Article  CAS  Google Scholar 

  • Chen G, Liu H (2008) Electrospun cellulose nanofiber reinforced soybean protein isolate composite film. J Appl Polym Sci 110:641–646

    Article  CAS  Google Scholar 

  • Cheng Q, Wang S, Rials TG, Lee SH (2007) Physical and mechanical properties of polyvinyl alcohol and polypropylene composite materials reinforced with fibril aggregates isolated from regenerated cellulose fibers. Cellulose 14(6):593–602

    Article  CAS  Google Scholar 

  • Dufresne A, Cavaille JY, Vignon MR (1997) Mechanical behavior of sheets prepared from sugar beet cellulose microfibrils. J Appl Polym Sci 64(6):1185–1194

    Article  CAS  Google Scholar 

  • Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito N, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1–33

    Article  CAS  Google Scholar 

  • Gindl W, Keckes J (2005) All-cellulose nanocomposite. Polymer 14:10221–10225

    Article  Google Scholar 

  • Hajji P, Cavaillé JY, Favier V, Gauthier C, Vigier G (2004) Tensile behavior of nanocomposites from latex and cellulose whiskers. Polym Composit 17(4):612–619

    Article  Google Scholar 

  • Henriksson M, Berglund LA (2007) Structure and properties of cellulose nanocomposite films containing melamine formaldehyde. J Appl Polym Sci 106:2817–2824

    Article  CAS  Google Scholar 

  • Iwamoto S, Nakagaito AN, Yano H (2005) Optically transparent composites reinforced with plant fiber-based nanofibers. Appl Phys A Mater Sci Process 81(6):1112

    Google Scholar 

  • Iwamoto S, Abe K, Yano H (2008) The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber network characteristics. Biomacromolecules 9:1022–1026

    Article  PubMed  CAS  Google Scholar 

  • Japanese Wood Research Society (2000) Experimental manual for wood science. Bun-eido Publishing Co., Ltd, Japan, p 94

    Google Scholar 

  • Jonoobi M, Harun J, Mathew AP, Hussein MZP, Oksman K (2010) Preparation of cellulose nanofibers with hydrophobic surface characteristics. Cellulose 17:299–307

    Article  CAS  Google Scholar 

  • Kaida R, Kaku T, Baba K, Oyadomari M, Watanabe T, Nishida K, Kanaya T, Shani Z, Shoseyov O, Hayashi T (2009) Loosening xyloglucan accelerates the enzymatic degradation of cellulose in wood. Molecul Plant 2(5):904–909

    Article  CAS  Google Scholar 

  • Lee SH, Teramoto Y, Endo T (2009) Enhancement of enzymatic accessibility by fibrillation of woody biomass using batch-type kneader with twin-screw elements. Bioresour Technol 101:769–774

    Article  PubMed  Google Scholar 

  • Lee SH, Chang F, Inoue S, Endo T (2010) Increase in enzyme accessibility by generation of nanospace in cell wall supramolecular structure. Bioresources Technol 101:7218–7223

    Article  CAS  Google Scholar 

  • Maiti P, Yamada K, Okamoto M, Ueda K, Okamoto K (2002) New polylactide/layered silicate nanocomposites: role of organoclays. Chem Mater 14:4654–4661

    Article  CAS  Google Scholar 

  • Nakagaito AN, Yano H (2004) The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiber based composites. Appl Phys A Mater Sci Process 80:547–552

    Google Scholar 

  • Nakagaito AN, Iwamoto S, Yano H (2005) Bacterial cellulose: the ultimate nano-scalar cellulose morphology for the production of high-strength composite. Appl Phys A Mater Sci Process 80:93–97

    Article  CAS  Google Scholar 

  • Nishino T, Takano K, Nakamae K (2003) Elastic modulus of the crystalline regions of cellulose polymorphs. J Polym Sci Part B Polym Phys 33(11):1647–1651

    Article  Google Scholar 

  • Nogi M, Iwamoto A, Nakagaito AN, Yano H (2009) Optically transparent nanofiber paper. Adv Mater 20:1–4

    Google Scholar 

  • Oksman K, Sain M (2006) Cellulose nanocmposites; processing, characterization and properties. ACS symposium series vol. 938. Oxford University Press, Oxford

    Book  Google Scholar 

  • Ougiya H, Hioki N, Watanabe K, Morinaga Y, Yoshinaga F, Samejima M (1998) Relationship between the physical properties and surface area of cellulose derived from adsorbates of varous molecular sizes. Biosci Biotechnol Biochem 62:1880–1884

    Article  CAS  Google Scholar 

  • Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641

    Article  CAS  Google Scholar 

  • Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8:2485–2491

    Article  PubMed  CAS  Google Scholar 

  • Sakaki T, Shibata M, Miki T, Hirosue H, Hayashi N (1996) Reaction model of cellulose decomposition in near-critical water and fermentation of products. Bioresour Technol 58:197–202

    Article  CAS  Google Scholar 

  • Samir MASA, Alloin F, Sanchez JY, Dufresne A (2004) Cross-linked nanocomposite polymer electrolytes reinforced with cellulose whiskers. Macromolecules 37:4839–4844

    Article  CAS  Google Scholar 

  • Samir MASA, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626

    Article  CAS  Google Scholar 

  • Schopfer P (2006) Biomechanics of plant growth. Am J Bot 93:1415–1425

    Article  PubMed  Google Scholar 

  • Stelte W, Sanadi AR (2009) Preparation and characterization of cellulose nanofibers from two commercial hardwood and softwood pulps. Ind Eng Chem Res 48:11211–11219

    Article  CAS  Google Scholar 

  • Tang C, Liu H (2008) Cellulose nanofiber reinforced poly (vinyl alcohol) composite film with high visible light transmittance. Compos Part A Appl Sci Manuf 39(10):1638–1643

    Article  Google Scholar 

  • Taniguchi T, Okamura K (1998) New films produced from microfibrillated natural fibres. Polym Int 47(3):291–294

    Article  CAS  Google Scholar 

  • Wan JQ, Wang Y, Xiao Q (2010) Effects of hemicellulose removal on cellulose fiber structure and recycling characteristics of eucalyptus pulp. Bioresour Technol 101:4577–4583

    Article  PubMed  CAS  Google Scholar 

  • Wu Q, Henriksson M, Liu X, Berglund LA (2007) A high strength nanocomposite based on microcrystalline cellulose and polyurethane. Biomacromolecules 8(12):3688–3692

    Article  Google Scholar 

  • Yano H, Sugiyama J, Nakagaito AN, Nogi M, Matsuura T, Hikita M, Handa K (2005) Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mater 17(2):153–155

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung-Hwan Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, F., Lee, SH., Toba, K. et al. Bamboo nanofiber preparation by HCW and grinding treatment and its application for nanocomposite. Wood Sci Technol 46, 393–403 (2012). https://doi.org/10.1007/s00226-011-0416-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-011-0416-0

Keywords

Navigation