Skip to main content
Log in

Threshold position control of arm movement with anticipatory increase in grip force

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The grip force holding an object between fingers usually increases before or simultaneously with arm movement thus preventing the object from sliding. We experimentally analyzed and simulated this anticipatory behavior based on the following notions. (1) To move the arm to a new position, the nervous system shifts the threshold position at which arm muscles begin to be recruited. Deviated from their activation thresholds, arm muscles generate activity and forces that tend to minimize this deviation by bringing the arm to a new position. (2) To produce a grip force, with or without arm motion, the nervous system changes the threshold configuration of the hand. This process defines a threshold (referent) aperture (Ra) of appropriate fingers. The actual aperture (Qa) is constrained by the size of the object held between the fingers whereas, in referent position Ra, the fingers virtually penetrate the object. Deviated by the object from their thresholds of activation, hand muscles generate activity and grip forces in proportion to the gap between the Qa and Ra. Thus, grip force emerges since the object prevents the fingers from reaching the referent position. (3) From previous experiences, the system knows that objects tend to slide off the fingers when arm movements are made and, to prevent sliding, it starts narrowing the referent aperture simultaneously with or somewhat before the onset of changes in the referent arm position. (4) The interaction between the fingers and the object is accomplished via the elastic pads on the tips of fingers. The pads are compressed not only due to the grip force but also due to the tangential inertial force (“load”) acting from the object on the pads along the arm trajectory. Compressed by the load force, the pads move back and forth in the gap between the finger bones and object, thus inevitably changing the normal component of the grip force, in synchrony with and in proportion to the load force. Based on these notions, we simulated experimental elbow movements and grip forces when subjects rapidly changed the elbow angle while holding an object between the index finger and the thumb. It is concluded that the anticipatory increase in the grip force with or without correlation with the tangential load during arm motion can be explained in neurophysiological and biomechanical terms without relying on programming of grip force based on an internal model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Adamovich SV, Burlachkova NI, Fel’dman AG (1984) A wave nature of the central regulation the trajectory of the articular angle in man. Biofizika 29:122–125

    PubMed  CAS  Google Scholar 

  • Archambault PS, Mihaltchev P, Levin MF, Feldman AG (2005) Basic elements of arm postural control analyzed by unloading. Exp Brain Res 164(2):225–241

    Article  PubMed  Google Scholar 

  • Asatryan DG, Feldman AG (1965) Functional tuning of the nervous system with control of movements or maintenance of a steady posture: I. Mechanographic analysis of the work of the joint on execution of a postural task. Biophysics 10:925–935

    Google Scholar 

  • Belen’kii VY, Gurfinkel VS, Pal’tsev Y (1967) Elements of control of voluntary movements, Biofizika 10:135–141

    Google Scholar 

  • Blakemore SJ, Goodbody SJ, Wolpert DM (1998) Predicting the consequences of our own actions: the role of sensorimotor context estimation. J Neurosci 18:7511–7518

    PubMed  CAS  Google Scholar 

  • Boudreau MJ, Smith AM (2001) Activity in rostral motor cortex in response to predictable force-pulse perturbations in a precision grip task. J Neurophysiol 86(3):1079–1085

    PubMed  CAS  Google Scholar 

  • Capaday C (1995) The effects of baclofen on the stretch reflex parameters of the cat. Exp Brain Res 104:287–296

    Article  PubMed  CAS  Google Scholar 

  • Dancause N, Taylor MD, Plautz EJ, Radel JD, Whittaker T, Nudo RJ, Feldman AG (2007) A stretch reflex in extraocular muscles of species purportedly lacking muscle spindles. Exp Brain Res, Jan 10 (Epub ahead of print)

  • Deuschl G, Feifel E, Guschlbauer B, Lucking CH (1995) Hand muscle reflexes following air puff stimulation. Exp Brain Res 105(1):138–46

    Article  PubMed  CAS  Google Scholar 

  • Dubois DM (2001) Computing anticipatory systems. In: AIP conference proceedings 573XI:706

  • Edin BB, Westling G, Johansson RS (1992) Independent control of human finger-tip forces at individual digits during precision lifting. J Physiol 450:547–564

    PubMed  CAS  Google Scholar 

  • Fagergren A, Ekeberg Ö, Forssberg H (2003) Control strategies correcting inaccurately programmed fingertip forces: Model predictions derived from human behavior. J Neurophys 89:2904–2916

    Article  Google Scholar 

  • Fedirchuk B, Dai Y (2004) Monoamines increase the excitability of spinal neurones in the neonatal rat by hyperpolarizing the threshold for action potential production. J Physiol 557:355–561

    Article  PubMed  CAS  Google Scholar 

  • Feldman AG (1993) The coactivation command for antagonist muscles involving Ib interneurons in mammalian motor control systems: An electrophysiologically testable model. Neurosci Let 155:167–170

    Article  CAS  Google Scholar 

  • Feldman AG (2007) Equilibrium point control (an essay). In: Karniel A (ed) Encyclopedic reference of neuroscience. Field: computational motor control (in press)

  • Feldman AG, Levin FM (1995) The origin and use of positional frames of reference in motor control. Behav Brain Sci 18:723–806

    Article  Google Scholar 

  • Feldman AG, Latash ML (2005) Testing hypotheses and the advancement of sciences: recent attempts to falsify the equilibrium point hypothesis. Exp Brain Res 161:91–103

    Article  PubMed  Google Scholar 

  • Feldman AG, Orlovsky GN (1972) The influence of different descending systems on the tonic stretch reflex in the cat. Exp Neurol 37(3):481–494

    Article  PubMed  CAS  Google Scholar 

  • Feldman AG, Levin MF Mitnitski AM, Archambault P (1998) 1998 ISEK congress keynote lecture multi-muscle control in human movements. J Electromyogr Kin 8:383–390

    Article  CAS  Google Scholar 

  • Flanagan JR, Wing AM (1993) Modulation of grip force with load force during point-to-point arm movements. Exp Brain Res 95:131–143

    Article  PubMed  CAS  Google Scholar 

  • Flanagan JR, Wing AM (1995) The stability of precision grip forces during cyclic arm movements with a hand-held load. Exp Brain Res 105(3):455–64

    PubMed  CAS  Google Scholar 

  • Flanagan JR, Wing AM (1997) The role of internal models in motion planning and control: evidence from grip force adjustments during movements of hand-held loads. J Neurosci 17(4):1519–1528

    PubMed  CAS  Google Scholar 

  • Flanagan JR, Ostry DJ, Feldman AG (1993) Control of trajectory modifications in target-directed reaching. J Mot Behav 25(3):140–152

    Article  PubMed  Google Scholar 

  • Foisy M, Feldman AG (2006) Threshold control of arm posture and movement adaptation to load. Exp Brain Res 18 Jul 2006 (Epub ahead of print)

  • Forget R, Lamarre Y (1995) Postural adjustments associated with different unloadings of the forearm: effects of proprioceptive and cutaneous afferent deprivation. Can J Physiol Pharmacol 73:285–294

    PubMed  CAS  Google Scholar 

  • Gribble PL, Ostry DJ, Sanguineti V, Laboissière R (1998) Are complex control signals required for human arm movement? J Neurophysiol 79:1409–1424

    PubMed  CAS  Google Scholar 

  • Grillner S (2003) The motor infrastructure: from ion channels to neuronal networks. Nat Rev Neurosci 4:573–586

    Article  PubMed  CAS  Google Scholar 

  • Günther M, Ruder H (2003) Synthesis of two–dimensional human walking: a test of the λ–model. Biol Cybern 89(2):89–106

    Article  PubMed  Google Scholar 

  • Gurfinkel VS, Lipshits MI, Lestienne FG (1988) Anticipatory neck muscle activity associated with rapid arm movements. Neurosci Lett 94(1–2):104–108

    Article  PubMed  CAS  Google Scholar 

  • Henneman E (1981) Recruitment of motor neurons: the size principle. In: Desmedt JE (ed) Progress in clinical neurophysiology: motor units types, recruitment and plasticity in health and disease, vol 9. Karger, Basel

  • Hodges PW, Gurfinkel VS, Brumagne S, Smith TC, Cordo PC (2002) Coexistence of stability and mobility in postural control: evidence from postural compensation for respiration. Exp Brain Res 144:293–302

    Article  PubMed  CAS  Google Scholar 

  • Huxley H, Hanson J (1954) Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. Nature 173(4412):973–976

    Article  PubMed  CAS  Google Scholar 

  • Issler H, Stephens JA (1983) The maturation of cutaneous reflexes studied in the upper limb in man. J Physiol 335:643–654

    PubMed  CAS  Google Scholar 

  • Jenner JR, Stephens JA (1982) Cutaneous reflex responses and their central nervous pathways studied in man. J Physiol 333:405–419

    PubMed  CAS  Google Scholar 

  • Johansson RS, Westling G (1984) Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects. Exp Brain Res 56(3):550–564

    Article  PubMed  CAS  Google Scholar 

  • Johansson RS, Westling G (1988) Programmed and triggered actions to rapid load changes during precision grip. Exp Brain Res 71:72–86

    PubMed  CAS  Google Scholar 

  • Kawato M (1999) Internal models for motor control and trajectory planning. Curr Opin Neurobiol 9:718–727

    Article  PubMed  CAS  Google Scholar 

  • Laboissière R, Ostry DJ, Feldman AG (1996) The control of multi-muscle systems: human jaw and hyoid movements. Biol Cybern 74:373–384

    Article  PubMed  Google Scholar 

  • Latash ML, Li S, Danion F, Zatsiorsky VM (2002) Central mechanisms of finger interaction during one- and two-hand force production at distal and proximal phalanges. Brain Research 924:198–208

    Article  PubMed  CAS  Google Scholar 

  • Lepelley MC, Thullier F, Koral J, Lestienne FG (2006) Muscle coordination in complex movements during Jete in skilled ballet dancers. Exp Brain Res 175:321–331

    Article  PubMed  Google Scholar 

  • Lestienne FG, Thullier F, Archambault P, Levin MF, Feldman AG (2000) Multi-muscle control of head movements in monkeys: the referent configuration hypothesis. Neurosci Lett 283(1):65–68

    Article  PubMed  CAS  Google Scholar 

  • Levin MF, Dimov M (1997) Spatial zones for muscle coactivation and the control of postural stability. Brain Res 757(1):43–59

    Article  PubMed  CAS  Google Scholar 

  • Li S, Danion F, Latash ML, Li Z-M, Zatsiorsky VM (2000) Finger coordination in multi-finger force production tasks involving fingers of the right hand and/or fingers of the left hand. J Appl Biomech 16:379–391

    CAS  Google Scholar 

  • Li S, Danion F, Latash ML, Li Z-M, Zatsiorsky VM (2001) Bilateral deficit and symmetry in finger force production during two-hand multi-finger tasks. Exp Brain Res 141:530–540

    Article  PubMed  CAS  Google Scholar 

  • Matthews PBC (1959) A study of certain factors influencing the stretch reflex of the decerebrate cat. J Physiol 147:547–564

    PubMed  CAS  Google Scholar 

  • Munoz DP, Pelisson D, Guitton D (1991) Movement of neural activity on the superior colliculus motor map during gaze shifts. Science 251:1358–60

    Article  PubMed  CAS  Google Scholar 

  • Nichols TR, Steeves JD (1986) Resetting of resultant stiffness in ankle flexor and extensor muscles in the decerebrated cat. Exp Brain Res 62:401–410

    Article  PubMed  CAS  Google Scholar 

  • Ostry DA, Feldman AG (2003) A critical evaluation of the force control hypothesis in motor control. Exp Brain Res 153:275–288

    Article  PubMed  Google Scholar 

  • Picard N, Smith AM (1992a) Primary motor cortical responses to perturbations of prehension in the monkey. J Neurophysiol 68(5):1882–94

    CAS  Google Scholar 

  • Picard N, Smith AM (1992b) Primary motor cortical activity related to the weight and texture of grasped objects in the monkey. J Neurophysiol 68(5):1867–1881

    CAS  Google Scholar 

  • Pilon J-F, Feldman AG (2006) Threshold control of motor actions prevents destabilizing effects of proprioceptive delays. Exp Brain Res 174(2):229–239

    Article  PubMed  Google Scholar 

  • Pilon J-F, De Serres SJ, Feldman AG (2005a) Precision grip during arm movement examined in the context of threshold control. In: Proceedings of progress in motor control V conference, Pennsylvania (USA)

  • Pilon J-F, De Serres SJ, Feldman AG (2005b) Threshold control of arm movement while holding an objects: no need for invoking internal models. In: The 35th Neuroscience meeting (abstracts)

  • Rosen R (1985) Anticipatory systems. Philosophical, mathematical and methodological foundations. Pergamon, New York

    Google Scholar 

  • Serina ER, Mote CD Jr, Rempel D (1997) Force response of the fingertip pulp to repeated compression–effects of loading rate, loading angle and anthropometry. J Biomech 30(10):1035–1040

    Article  PubMed  CAS  Google Scholar 

  • Serina ER, Mockensturm E, Mote CD Jr, Rempel D (1998) A structural model of the forced compression of the fingertip pulp. J Biomech 31(7):639–646

    Article  PubMed  CAS  Google Scholar 

  • St-Onge N, Feldman AG (2004) Referent configuration of the body: a global factor in the control of multiple skeletal muscles. Exp Brain Res 155:291–300

    Article  PubMed  Google Scholar 

  • St-Onge N, Adamovich SV, Feldman AG (1997) Control processes underlying elbow flexion movements may be independent of kinematic and electromyographic patterns: experimental study and modelling. Neurosci 79(1):295–316

    Article  CAS  Google Scholar 

  • Weeks DL, Aubert MP, Feldman AG, Levin MF (1996) One-trial adaptation of movement to changes in load. J Neurophysiol 75(1):60–74

    PubMed  CAS  Google Scholar 

  • Wolpert DM, Kawato M (1998) Multiple-paired forward and inverse models for motor control. Neural Netw 11:1317–1329

    Article  PubMed  CAS  Google Scholar 

  • Wu JZ, Dong RG, Smutz WP, Schopper AW (2003) Modeling of time-dependant force responses of fingertip to dynamic loading. J Biomech 36:383–392

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported by NSERC, FQRNT, CIHR and IGB of U of Montreal (Canada). We thank Valeri Goussev, Eric Johnstone, Caroline Paquette and Nancy St-Onge for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anatol G. Feldman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pilon, JF., De Serres, S.J. & Feldman, A.G. Threshold position control of arm movement with anticipatory increase in grip force. Exp Brain Res 181, 49–67 (2007). https://doi.org/10.1007/s00221-007-0901-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-007-0901-8

Keywords

Navigation