Skip to main content
Log in

Threshold control of motor actions prevents destabilizing effects of proprioceptive delays

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

It is usually assumed that proprioceptive feedback comes to motoneurons too late to contribute to the initial activity of agonist muscles during fast arm movements, leading to the suggestion that this feedback is only efficient in slow movements and postural control. The argument does not take into account that the changes in the motoneuronal membrane potentials and the associated changes in the state of spinal neurons preceding the initial activity of muscles deeply affect, in a forward way, the state of reflex systems by shifting their thresholds, as suggested in the λ model for motor control. As a result, the initial muscle activity emerges with full contribution of these systems so that the effects of reflex delays become negligible. We tested the hypothesis that threshold control of muscle activation may be instrumental in preventing destabilizing effects of proprioceptive delays in spinal and trans-cortical pathways to motoneurons. The analysis was made by recording fast elbow movements (peak velocity ∼300–500°/s) and simulating them in a dynamic model that incorporates the notion of threshold control of intrinsic and reflex muscle properties. The model was robust in reproducing experimental movement patterns (R 2>0.95). It generated stable output despite substantial proprioceptive (up to 100 ms) and electromechanical (40 ms) delays. Stability was thus ensured for delays not only in segmental (about 25–50 ms) but also in trans-cortical loops (50–70 ms). Our study illustrates that a natural physiological process—threshold control—may manifest feed-forward properties hitherto attributed to hypothetical internal neural models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adamovich SV, Levin MF, Feldman AG (1997) Central modifications of reflex parameters may underlie the fastest arm movements. J Neurophysiol 77:1460–1469

    PubMed  CAS  Google Scholar 

  • Archambault PS, Mihaltchev P, Levin MF, Feldman AG (2005) Basic elements of arm postural control analyzed by unloading. Exp Brain Res 164:225–241

    Article  PubMed  Google Scholar 

  • Asatryan DG, Feldman AG (1965) Functional tuning of the nervous system with control of movements or maintenance of a steady posture: I. Mechanographic analysis of the work of the joint on execution of a postural task. Biophysics 10:925–935

    Google Scholar 

  • Belen’kii VY, Gurfinkel VS, Pal’tsev Y (1967) Elements of control of voluntary movements. Biofizika 10:135–141

    Google Scholar 

  • Berkinblit MB, Deliagina TG, Orlovsky GN, Feldman AG (1980) Activity of motoneurons during fictitious scratch reflex in the cat. Brain Res 193:427–438

    Article  PubMed  CAS  Google Scholar 

  • Bhushan N, Shadmehr R (1999) Computational nature of human adaptive control during learning of reaching movements in force fields. Biol Cybern 81:39–60

    Article  PubMed  CAS  Google Scholar 

  • Blakemore SJ, Goodbody SJ, Wolpert DM (1998) Predicting the consequences of our own actions: the role of sensorimotor context estimation. J Neurosci 18(18):7511–7518

    PubMed  CAS  Google Scholar 

  • Brown IE, Loeb GE (2000) A reductionist approach to creating and using neuromuscular models. In: Winters JM, Crago PE (eds) Biomechanics and neural control of posture and movement. Springer, Berlin Heidelberg New York, pp 148–163

    Google Scholar 

  • Burke RE, Rudomin P, Zajac FE III (1976) The effect of activation history on tension production by individual muscle units. Brain Res 109:515–529

    Article  PubMed  CAS  Google Scholar 

  • Cavanagh PR, Komi PV (1979) Electromechanical delay in human skeletal muscle under concentric and eccentric contractions. Eur J Appl Physiol Occup Physiol 42(3):159–163

    Article  PubMed  CAS  Google Scholar 

  • Desmedt JE (1983) Size principle of motoneuron recruitment and the calibration of muscle force and speed in man. Adv Neurol 39:227–251

    PubMed  CAS  Google Scholar 

  • Dubois DM (2001) Computing anticipatory systems. AIP Conf Proc 573XI:706

    Google Scholar 

  • Dudley GA, Harris RT, Duvoisin MR, Hather BM, Buchanan P (1990) Effect of voluntary vs. artificial activation on the relationship of muscle torque to speed. J Appl Physiol 69(6):2215–2221

    PubMed  CAS  Google Scholar 

  • Feldman AG (1966) Functional tuning of the nervous system with control of movement or maintenance of a steady posture. II. Controllable parameters of the muscle. Biophysics 11:565–578

    Google Scholar 

  • Feldman AG (1980) Superposition of motor programs. II. Rapid flexion of forearm in man. Neuroscience 5:91–95

    Article  PubMed  CAS  Google Scholar 

  • Feldman AG (1986) Once more on the equilibrium-point hypothesis (λ model) for motor control. J Mot Behav 18(1):17–54

    PubMed  CAS  Google Scholar 

  • Feldman AG (2006) Equilibrium point control (an essay). In: Amir Karniel (ed) Encyclopedic reference of neuroscience. Field: Comput Motor Control (in press)

  • Feldman AG, Latash ML (2005) Testing hypotheses and the advancement of science: recent attempts to falsify the equilibrium point hypothesis. Exp Brain Res 161:91–103

    Google Scholar 

  • Feldman AG, Levin MF (1995) The origin and use of positional frames of reference in motor control. Behav Brain Sci 18:723–806

    Google Scholar 

  • Feldman AG, Orlovsky GN (1972) The influence of different descending systems on the tonic stretch reflex in the cat. Exp Neurol 37:481–494

    Article  PubMed  CAS  Google Scholar 

  • Flanagan JR, Wing AM (1997) The role of internal models in motion planning and control: evidence from grip force adjustments during movements of hand-held loads. J Neurosci 17:1519–1528

    PubMed  CAS  Google Scholar 

  • Ghafouri M, Feldman AG (2001) The timing of control signals underlying fast point-to-point arm movements. Exp Brain Res 137:411–423

    Article  PubMed  CAS  Google Scholar 

  • Gottlieb GL, Corcos Dm, Agarwal CC (1989) Strategies for the control of voluntary movements with one mechanical degree of freedom. Behav Brain Sci 12:189–250

    Article  Google Scholar 

  • Gribble PL, Ostry DJ (2000) Compensation for loads during arm movements using equilibrium-point control. Exp Brain Res 135:474–482

    Article  PubMed  CAS  Google Scholar 

  • Gribble PL, Ostry DJ, Sanguineti V, Laboissière R (1998) Are complex control signals required for human arm movements? J Neurophysiol 79:1409–1424

    PubMed  CAS  Google Scholar 

  • Hill AV (1938) The heat of shortening and the dynamic constants of muscle. Proc R Soc Lond Ser B 126:136–195

    Article  Google Scholar 

  • Hinder MR, Milner TE (2003) The case for an internal dynamics model versus equilibrium point control in human movement. J Physiol 549:953–963

    Article  PubMed  CAS  Google Scholar 

  • Jenmalm P, Dahlstedt S, Johansson RS (2000) Visual and tactile information about object-curvature control fingertip forces and grasp kinematics in human dexterous manipulation. J Neurophysiol 84:2984–2997

    PubMed  CAS  Google Scholar 

  • Kots YM, Zhukov VI (1973) Supraspinal control over segmental centers of antagonist muscles in man. 3. Tuning of spinal reciprocal inhibition system during organization preceding voluntary movement. Neurosci Behav Physiol 16:9–15

    Article  Google Scholar 

  • Kozhina GV, Person RS, Smetanin BN. (1985) State of motoneurons and the monosynaptic reflex arc before a simple voluntary movement (in Russian). Fiziol Cheloveka 11:606–615

    PubMed  CAS  Google Scholar 

  • Lestienne F (1979) Effects of inertial load and velocity on the braking process of voluntary limb movements. Exp Brain Res 35(3):407–418

    Article  PubMed  CAS  Google Scholar 

  • Loeb GE, Brown IE, Cheng EJ (1999) A hierarchical foundation for models of sensorimotor control. Exp Brain Res 126:1–18

    Article  PubMed  CAS  Google Scholar 

  • Matthews PBC (1959) A study of certain factors influencing the stretch reflex of the decerebrated cat. J Physiol 147:547–564

    PubMed  CAS  Google Scholar 

  • Miall RC, Weir DJ, Wolpert DM, Stein JF (1993) Is the cerebellum a Smith predictor? J Mot Behav 25:203–216

    PubMed  CAS  Google Scholar 

  • Nichols TR, Steeves JD (1986) Resetting of resultant stiffness in ankle flexor and extensor muscles in the decerebrated cat. Exp Brain Res 62:401–410

    Article  PubMed  CAS  Google Scholar 

  • Norman RW, Komi PV (1979) Electromechanical delay in skeletal muscle under normal movement conditions. Acta Physiol Scand 106:241–248

    PubMed  CAS  Google Scholar 

  • Ostry DJ, Feldman AG (2003) A critical evaluation of the force control hypothesis in motor control. Exp Brain Res 153:275–288

    Article  PubMed  Google Scholar 

  • Partridge LD, Benton LA (1981) Muscle the motor. In: Brooks VB (eds) Handbook of physiology, Sect. I: The nervous system, vol II, Motor control part 1. American Physiological Society, Bethesda, pp 43–106

  • Pierrot-Deseilligny E, Katz R, Hultborn H (1983) Functional organization of recurrent inhibition in man: changes preceding and accompanying voluntary movements. Adv Neurol 39:443–457

    PubMed  CAS  Google Scholar 

  • Pilon J-F, De Serres SJ, Feldman AG (2005a) Precision grip during arm movement examined in the context of threshold control. In: Progress in motor control V, Pennsylvania (USA), Proceedings

  • Pilon J-F, De Serres SJ, Feldman AG (2005b) Threshold control of arm movement while holding an objects: no need for invoking internal models. In: 35th neuroscience meeting, Abstracts

  • Rosen R (1985) Anticipatory systems. Philosophical, mathematical and methodological foundations. Pergamon, New York

    Google Scholar 

  • Rothwell JC, Traub MM, Marsden D (1982) Automatic and “voluntary” responses compensating for disturbances of human thumb movements. Brain Res 248:33–41

    Article  PubMed  CAS  Google Scholar 

  • Rothwell JC, Day BL, Berardeli A, Marsden D (1986) Habituation and conditioning of the human long latency stretch reflexes. Exp Brain Res 63:197–204

    Article  PubMed  CAS  Google Scholar 

  • Shweighofer N, Arbib MA, Kawato M (1998) Role of cerebellum in reaching movements in humans. I. Distributed inverse dynamic control. Eur J Neurosci 10:86–94

    Article  Google Scholar 

  • St-Onge N, Feldman AG (2004) Referent configuration of the body: a global factor in the control of multiple skeletal muscles. Exp Brain Res 155:291–300

    Article  PubMed  Google Scholar 

  • St-Onge N, Adamovich SV, Feldman AG (1997) Control processes underlying elbow flexion movements may be independent of kinematic and electromyographic patterns: experimental study and modelling. Neuroscience 79:295–316

    Article  PubMed  CAS  Google Scholar 

  • Thomas CK, Johansson RS, Bigland-Ritchie B (1999) Pattern of pulses that maximize force output from single human thenar motor units. J Neurophysiol 82:188–95

    Google Scholar 

  • Von Holst E, Mittelstaedt H (1950/1973) Daz reafferezprincip. Wechselwirkungen zwischen Zentralnerven-system und Peripherie. Naturwiss 37:467–476. The reafference principle. In: The behavioral physiology of animals and man. The collected papers of Erich von Holst. Martin R (translator) University of Miami Press, Coral Gables, Florida, vol 1, pp 139–173

  • Wagner H, Blickhan R (1999) Stabilizing function of skeletal muscles: an analytical investigation. J Theor Biol 199:163–179

    Article  PubMed  CAS  Google Scholar 

  • Weeks DL, Aubert MP, Feldman AG, Levin MF (1996) One-trial adaptation of movement to changes in load. J Neurophysiol 75(1):60–74

    PubMed  CAS  Google Scholar 

  • Westing SH, Seger JY, Thorstensson A (1990) Effects of electrical stimulation on eccentric and concentric torque–velocity relationships during knee extension in man. Acta Physiol Scand 140:17–22

    Article  PubMed  CAS  Google Scholar 

  • Witney AG, Goodbody SJ, Wolpert DM (1999) Predictive motor learning of temporal delays. J Neurophysiol 82:2039–2048

    PubMed  CAS  Google Scholar 

  • Witney AG, Wing A, Thonnard J-L, Smith AM (2004) The cutaneous contribution to adaptive precision grip. Trends Neurosci 27(10):637–643

    Article  PubMed  CAS  Google Scholar 

  • Zatsiorsky VM, Duarte M (2000) Rambling and trembling in quiet standing. Motor Control 4:185–200

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported by NSERC, CIHR, FQRNT, and IGB (University of Montreal), Canada. We thank Mindy Levin for improving the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anatol G. Feldman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pilon, JF., Feldman, A.G. Threshold control of motor actions prevents destabilizing effects of proprioceptive delays. Exp Brain Res 174, 229–239 (2006). https://doi.org/10.1007/s00221-006-0445-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-006-0445-3

Keywords

Navigation