Skip to main content

Advertisement

Log in

Brezis–Gallouet–Wainger Type Inequalities and Blow-Up Criteria for Navier–Stokes Equations in Unbounded Domains

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We shall find the weakest norm that satisfies the Brezis–Gallouet–Wainger type inequality, under some conditions. As an application of the Brezis–Gallouet–Wainger type inequality, we shall establish Beale–Kato–Majda type blow-up criteria of smooth solutions to the 3-D Navier–Stokes equations in unbounded domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beale J.T., Kato T., Majda A.: Remarks on the breakdown of smooth solutions for the 3-D Euler equations. Commun. Math. Phys. 94, 61–66 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Borchers W., Miyakawa T.: L 2 decay for the Navier–Stokes flow in halfspaces. Math. Ann. 282, 139–155 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  3. Borchers W., Sohr H.: On the semigroup of the Stokes operator for exterior domains in L q-spaces. Math. Z. 196, 415–425 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bradshaw, Z., Farhat, A., Grujic, Z.: An algebraic reduction of the ’scaling gap’ in the Navier–Stokes regularity problem. arXiv:1704.05546 (preprint)

  5. Brezis H., Gallouet T.: Nonlinear Schrödinger evolution equations. Nonlinear Anal. Theory Methods Appl. 4, 677–681 (1980)

    Article  MATH  Google Scholar 

  6. Brezis H., Wainger S.: A note on limiting cases of Sobolev embeddings and convolution inequalities. Comm. Partial Differ. Equ. 5, 773–789 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  7. Caffarelli L., Kohn R., Nirenberg L.: Partial regularity of suitable weak solutions of the Navier–Stokes equations. Commun. Pure Appl. Math. 35, 771–831 (1982)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Chae D.: On the well-posedness of the Euler equations in the Triebel–Lizorkin spaces. Commun. Pure Appl. Math. 55, 654–678 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chemin J.-Y.: Perfect Incompressible Fluids. Oxford Lecture Series in Mathematics and Its Applications. Oxford Science Publications, Oxford (1998)

    Google Scholar 

  10. Engler H.: An alternative proof of the Brezis–Wainger inequality. Commun. Partial Differ. Equ. 14(4), 541–544 (1989)

    MathSciNet  MATH  Google Scholar 

  11. Fan J., Jiang S., Nakamura G., Zhou Y.: Logarithmically improved regularity criteria for the Navier–Stokes and MHD equations. J. Math. Fluid Mech. 13, 557–571 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Farwig R., Sohr H.: On the Stokes and Navier–Stokes system for domains with noncompact boundary in L q-spaces. Math. Nachr. 170, 53–77 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. Farwig R., Sohr H.: Helmholtz decomposition and Stokes resolvent system for aperture domains in L q-spaces. Analysis 16, 1–26 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ferrari A.B.: On the blow-up of solutions of the 3-D Euler equations in a bounded domain. Commun. Math. Phys. 155, 277–294 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Fujiwara D., Morimoto H.: An L r -theorem of the Helmholtz decomposition of vector fields. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24, 685–700 (1977)

    MathSciNet  MATH  Google Scholar 

  16. Giga Y.: Analyticity of the semigroup generated by the Stokes operator in L r spaces. Math. Z. 178, 297–329 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  17. Giga Y., Miyakawa T.: Solutions in L r of the Navier–Stokes initial value problem. Arch. Ration. Mech. Anal. 89, 267–281 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  18. Grujic Z., Guberovic R.: A regularity criterion for the 3D NSE in a local version of the space of functions of bounded mean oscillations. Ann. I. H. Poincare 27, 773–778 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Gustafson S., Kang K., Tsai T.-P.: Interior regularity criteria for suitable weak solutions of the Navier–Stokes equations. Commun. Math. Phys. 273, 161–176 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Ibrahim S., Majdoub M., Masmoudi N.: Double logarithmic inequality with a sharp constant. Proc. AMS. 135, 87–97 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Iwashita H.: L q L r estimates for solutions of the nonstationary Stokes equations in an exterior domain and the Navier–Stokes initial value problems in L q spaces. Math. Ann. 285, 265–288 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kato T.: Strong L p-solutions of the Navier–Stokes equation in R m, with applications to weak solutions. Math. Z. 187, 471–480 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kato T., Ponce G.: Commutator estimates and the Euler and Navier–Stokes equations. Commun. Pure Appl. Math. 41, 891–907 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kozono H., Ogawa T., Taniuchi Y.: The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations. Math. Z. 242, 251–278 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kozono H., Taniuchi Y.: Limiting case of the Sobolev inequality in BMO, with application to the Euler equations. Commun. Math. Phys. 214, 191–200 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Kozono H., Wadade H.: Remarks on Gagliardo–Nirenberg type inequality with critical Sobolev space and BMO. Math. Z. 259, 935–950 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kubo, T., Shibata, Y.: On some properties of solutions to the Stokes equation in the half-space and perturbed half-space. In: D’Ancona, P., Georgev, V. (eds.) Dispersive Nonlinear Problems in Mathematical Physics. Quad. Mat., vol. 15, pp. 149–220. Dept. Math., Seconda Univ. Napoli, Caserta (2004)

  28. Kukavica I.: On the dissipative scale for the Navier–Stokes equation. Indiana Univ. Math. J. 48, 1057–1081 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  29. Matsumoto T., Ogawa T.: Interpolation inequality of logarithmic type in abstract Besov spaces and an application to semilinear evolution equations. Math. Nachr. 283, 1810–1828 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Miyakawa T.: On nonstationary solutions of the Navier–Stokes equations in an exterior domain. Hiroshima Math. J. 12, 115–140 (1982)

    MathSciNet  MATH  Google Scholar 

  31. Morii K., Sato T., Wadade H.: Brézis–Gallouët–Wainger type inequality with a double logarithmic term in the Hölder space: Its sharp constants and extremal functions. Nonlinear Anal. 73, 1747–1766 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ogawa T.: Sharp Sobolev inequality of logarithmic type and the limiting regularity condition to the harmonic heat flow. SIAM J. Math. Anal. 34, 1318–1330 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ogawa T., Taniuchi Y.: A note on blow-up criterion to the 3-D Euler equations in a bounded domain. J. Math. Fluid Mech. 5, 17–23 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Ogawa T., Taniuchi Y.: On blow-up criteria of smooth solutions to the 3-D Euler equations in a bounded domain. J. Differ. Equ. 190, 39–63 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Ozawa T.: On critical cases of Sobolev’s inequalities. J. Funct. Anal. 127, 259–269 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  36. Planchon F.: An extension of the Beale–Kato–Majda criterion for the Euler equations. Commun. Math. Phys. 232, 319–326 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Shirota T., Yanagisawa T.: A continuation principle for the 3-D Euler equations for incompressible fluids in a bounded domain. Proc. Jpn. Acad. Ser. A 69, 77–82 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  38. Simader, C.G., Sohr, H.: A new approach to the Helmholtz decomposition and the Neumann problem in L q-spaces for bounded and exterior domains. In: Galdi, G.P. (ed.) Mathematical Problems Relating to the Navier–Stokes Equation, Series Advances in Mathematical Sciences and Applications, vol. 11, pp. 1–35. World Scientific, River Edge (1992)

  39. Stein E.M.: Harmonic Analysis. Princeton University Press, Princeton (1993)

    Google Scholar 

  40. Stein E.M., Shakarchi R.: Functional Analysis. Introduction to Further Topics in Analysis. Princeton Lectures in Analysis. Princeton University Press, Princeton (2011)

    MATH  Google Scholar 

  41. Sohr H.: A regularity class for the Navier–Stokes equations in Lorentz spaces. J. Evol. Equ. 1, 441–467 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  42. Taylor M.E.: Pseudodifferential Operators and Nonlinear PDE. Progress in Mathematics. Birkhäuser, Boston (1991)

    Book  Google Scholar 

  43. Vishik M.: Incompressible flows of an ideal fluid with vorticity in borderline spaces of Besov type. Ann. Sci. École Norm. Sup. 32, 769–812 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  44. Weissler F.B.: The Navier–Stokes initial value problem in L p. Arch. Ration. Mech. Anal. 74, 219–230 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  45. Yudovich V.I.: Uniqueness theorem for the basic nonstationary problem in the dynamics of an ideal incompressible fluid. Math. Res. Lett. 2, 27–38 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  46. Zajaczkowski W.M.: Remarks on the breakdown of smooth solutions for the 3-d Euler equations in a bounded domain. Bull. Pol. Acad. Sci. Math. 37, 169–181 (1989)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasushi Taniuchi.

Additional information

Communicated by W. Schlag

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakao, K., Taniuchi, Y. Brezis–Gallouet–Wainger Type Inequalities and Blow-Up Criteria for Navier–Stokes Equations in Unbounded Domains. Commun. Math. Phys. 359, 951–973 (2018). https://doi.org/10.1007/s00220-017-3061-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-017-3061-0

Navigation