Skip to main content
Log in

Interior Regularity Criteria for Suitable Weak Solutions of the Navier-Stokes Equations

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We present new interior regularity criteria for suitable weak solutions of the 3-D Navier-Stokes equations: a suitable weak solution is regular near an interior point z if either the scaled \({L^{p,q}_{x,t}}\) -norm of the velocity with 3/p + 2/q ≤ 2, 1 ≤ q ≤ ∞, or the \({L^{p,q}_{x,t}}\) -norm of the vorticity with 3/p + 2/q ≤ 3, 1 ≤  q <  ∞, or the \({L^{p,q}_{x,t}}\) -norm of the gradient of the vorticity with 3/p + 2/q ≤ 4, 1 ≤  q, 1 ≤  p, is sufficiently small near z.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beirão da Veiga H. (1995). A new regularity class for the Navier-Stokes equations in \({\mathbb{R}^{n}}\) Chin. Ann. of Math. 16(B, 4): 407–412

    MATH  Google Scholar 

  2. Caffarelli L., Kohn R. and Nirenberg L. (1982). Partial regularity of suitable weak solutions of the Navier-Stokes equations. Comm. Pure Appl. Math. 35: 771–831

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. Chae, D., Kang, K., Lee, J.: On the interior regularity of suitable weak solutions to the Navier-Stokes equations. Comm. Partial Differ. Eqs. (accepted)

  4. Chen Z.-M. and Price W.G. (2001). Blow-up rate estimates for weak solutions of the Navier-Stokes equations. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 457(2015): 2625–2642

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Choe H. and Lewis J.L. (2000). On the singular set in the Navier-Stokes equations. J. Funct. Anal. 175(2): 348–369

    Article  MATH  MathSciNet  Google Scholar 

  6. Constantin P. (1990). Navier-Stokes equations and Area of Interfaces. Commun. Math. Phys. 129: 241–266

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. Escauriaza, L., Seregin, G., Šverák, V.: L 3,∞-solutions of Navier-Stokes equations and backward uniqueness. Usp. Mat. Nauk 58 (2(350)) 3–44 (2003) (in Russian); translation from Russ. Math. Surv. 58(2), 211–250 (2003)

    Google Scholar 

  8. Fabes E.B., Jones B.F. and Riviére N.M. (1972). The initial value problem for the Navier-Stokes equations with data in L p. Arch. Ration. Mech. Anal. 45: 222–240

    Article  MATH  Google Scholar 

  9. Giga Y. (1986). Solutions for semilinear parabolic equations in L p and regularity of weak solutions of the Navier-Stokes system. J. Differ Eqs. 62(2): 186–212

    Article  MathSciNet  Google Scholar 

  10. Gustafson S., Kang K. and Tsai T.-P. (2006). Regularity criteria for suitable weak solutions of the Navier-Stokes equations near the boundary. J. Differ. Eqs. 226: 594–618

    Article  MATH  MathSciNet  Google Scholar 

  11. Hopf E. (1951). Über die Anfangswertaufgabe fr die hydrodynamischen Grundgleichungen. Math. Nachr. 4: 213–231

    MATH  MathSciNet  Google Scholar 

  12. Kang K. (2004). On boundary regularity of the Navier-Stokes equations. Comm. Partial Differ. Eqs. 29(7–8): 955–987

    Article  MATH  Google Scholar 

  13. Kozono H. (1998). Removable singularities of weak solutions to the Navier-Stokes equations. Comm. Partial Differ. Eqs. 23(5–6): 949–966

    MATH  MathSciNet  Google Scholar 

  14. Kozono H. (2001). Weak solutions of the Navier-Stokes equations with test functions in the weak-L n space. Tohoku Math J. (2) 53: 55–79

    MATH  MathSciNet  Google Scholar 

  15. Ladyzenskaja O.A. (1967). Uniqueness and smoothness of generalized solutions of Navier-Stokes equations, (Russian) Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 5: 169–185

    MathSciNet  Google Scholar 

  16. Ladyzenskaja O.A. and Seregin G.A. (1999). On partial regularity of suitable weak solutions to the three-dimensional Navier-Stokes equations. J. Math. Fluid Mech. 1: 356–387

    Article  ADS  MathSciNet  Google Scholar 

  17. Leray J. (1934). Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 64: 193–248

    Article  MathSciNet  Google Scholar 

  18. Lin F.-H. (1998). A new proof of the Caffarelli-Kohn-Nirenberg theorem. Comm. Pure Appl. Math. 51(3): 241–257

    Article  MATH  MathSciNet  Google Scholar 

  19. Nečas J., Růzička M. and Šverák V. (1996). On Leray’s self-similar solutions of the Navier-Stokes equations. Acta Math. 176(2): 283–294

    Article  MathSciNet  MATH  Google Scholar 

  20. Prodi G. (1959). Un teorema di unicita per le equazioni di Navier-Stokes (Italian). Ann. Mat. Pura Appl. 48(4): 173–182

    MATH  MathSciNet  Google Scholar 

  21. Scheffer V. (1976). Partial regularity of solutions to the Navier-Stokes equations. Pacific J. Math. 66(2): 535–552

    MATH  MathSciNet  Google Scholar 

  22. Scheffer V. (1977). Hausdorff measure and the Navier-Stokes equations. Commun. Math. Phys. 55: 97–112

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. Scheffer V. (1980). The Navier-Stokes equations on a bounded domain. Commun. Math. Phys. 73(1): 1–42

    Article  MATH  ADS  MathSciNet  Google Scholar 

  24. Scheffer V. (1982). Boundary regularity for the Navier-Stokes equations in a half-space. Commun. Math. Phys. 85(2): 275–299

    Article  MATH  ADS  MathSciNet  Google Scholar 

  25. Scheffer V. (1985). A solution to the Navier-Stokes inequality with an internal singularity. Commun. Math. Phys. 101(1): 47–85

    Article  MATH  ADS  MathSciNet  Google Scholar 

  26. Scheffer V. (1987). Nearly one-dimensional singularities of solutions to the Navier-Stokes inequality. Commun. Math. Phys. 110(4): 525–551

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. Seregin G.A. (2002). Local regularity of suitable weak solutions to the Navier-Stokes equations near the boundary. J. Math. Fluid Mech. 4(1): 1–29

    Article  MATH  ADS  MathSciNet  Google Scholar 

  28. Seregin G.A. (2005). On Smoothness of L 3,∞-Solutions to the Navier-Stokes Equations up to Boundary. Math. Ann. 332(1): 219–238

    Article  MATH  MathSciNet  Google Scholar 

  29. Seregin, G.A., Shilkin, T.N., Solonnikov, V.A.: Boundary partial regularity for the Navier-Stokes equations. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 310 (2004), Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Teor. Funkts. 34, 158–190, 228; translation in J. Math. Sci. (N. Y.) 132(3), 339–358 (2006)

  30. Seregin G.A. and Sverak V. (2002). Navier-Stokes equations with lower bounds on the pressure. Ration. Mech. Anal. 163(1): 65–86

    Article  MATH  MathSciNet  Google Scholar 

  31. Serrin J. (1962). On the interior regularity of weak solutions of the Navier-Stokes equations. Arch. Ration. Mech. Anal. 9: 187–195

    Article  MATH  MathSciNet  Google Scholar 

  32. Serrin, J.: The initial value problem for the Navier-Stokes equations. In: 1963 Nonlinear Problems, Proc. Sympos., Madison, Wis., Madison, WI: Univ. of Wisconsin Press, 1963, pp. 69–98

  33. Sohr H. (1983). Zur Regularitätstheorie der instationären Gleichungen von Navier-Stokes. Math. Z. 184(3): 359–375

    Article  MATH  MathSciNet  Google Scholar 

  34. Sohr H. (2001). A regularity class for the Navier-Stokes equations in Lorentz spaces. J. Evol. Equ. 1(4): 441–467

    Article  MATH  MathSciNet  Google Scholar 

  35. Sohr H. (1983). Zur Regularitätstheorie der instationären Gleichungen von Navier-Stokes. Math. Z. 184(3): 359–375

    Article  MATH  MathSciNet  Google Scholar 

  36. Solonnikov, V.A.: Estimates of solutions of the Stokes equations in S. L. Sobolev spaces with a mixed norm. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 288, 204–231 (2002)

  37. Struwe M. (1988). On partial regularity results for the Navier-Stokes equations. Comm. Pure Appl. Math. 41: 437–458

    Article  MATH  MathSciNet  Google Scholar 

  38. Takahashi S. (1990). On interior regularity criteria for weak solutions of the Navier-Stokes equations. Manuscripta Math. 69(3): 237–254

    Article  MATH  MathSciNet  Google Scholar 

  39. Tian G. and Xin Z. (1999). Gradient estimation on Navier-Stokes equations. Comm. Anal. Geom. 7(2): 221–257

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tai-Peng Tsai.

Additional information

Communicated by P. Constantin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gustafson, S., Kang, K. & Tsai, TP. Interior Regularity Criteria for Suitable Weak Solutions of the Navier-Stokes Equations. Commun. Math. Phys. 273, 161–176 (2007). https://doi.org/10.1007/s00220-007-0214-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-007-0214-6

Keywords

Navigation