Skip to main content
Log in

Existence and Uniqueness Solutions for Some Strongly Quasilinear Parabolic Problems in Anisotropic Sobolev Spaces

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we will study the strongly nonlinear parabolic problems of the type

$$\begin{aligned}\left\{ \begin{array}{ll} \displaystyle \frac{\partial b(u)}{\partial t} - \sum _{i=1}^{N} D^{i}(a_{i}(x,t,u,\nabla u))+ H(x,t,\nabla u) = f(x,t) \quad &{}\hbox { in }Q_{T}=\Omega \times (0, T),\\ u(x, t) = 0 &{}\hbox { on } S_{T}= \partial \Omega \times (0, T),\\ b(u(x, 0))= b(u_{0}(x)) &{}\hbox { in } \Omega , \end{array} \right. \end{aligned}$$

where \(b(u_{0})\) belongs to \(L^{1}(\Omega )\), and the behavior of \(H(x,t,\xi )\) satisfies the growth conditions. Our work focuses on establishing the existence and uniqueness of a renormalized solution for this quasilinear parabolic equation. Furthermore, we conclude some regularity results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Blanchard, D., Murat, F.: Renormalised solutions of nonlinear parabolic problems with L1 data: existence and uniqueness. Proc. Roy. Soc. Edinburgh Sect. A 127(6), 1137–1152 (1997)

  2. Prignet, A.: Existence and uniqueness of entropy solutions of parabolic problems with L1 data. Nonlinear Anal. 28, 1943–1954 (1997)

    Article  MathSciNet  Google Scholar 

  3. Carrillo, J., Wittbold, P.: Uniqueness of renormalized solutions of degenerate elliptic-parabolic problems. J. Differ. Equ. 156(1), 93–121 (1999)

    Article  MathSciNet  Google Scholar 

  4. Droniou, J., Prignet, A.: Equivalence between entropy and renormalized solutions for parabolic equations with smooth measure data. NoDEA Nonlinear Differ. Equ. Appl. 14(1–2), 181–205 (2007)

    Article  MathSciNet  Google Scholar 

  5. Petitta, F.: Renormalized solutions of nonlinear parabolic equations with general measure data. Annali di Matematica 187, 563–604 (2008)

    Article  MathSciNet  Google Scholar 

  6. Blanchard, D., Murat, F., Redwane, H.: Existence and uniqueness of a renormalized solution for a fairly general class of nonlinear parabolic problems. J. Differ. Equ. 177, 331–374 (2001)

    Article  MathSciNet  Google Scholar 

  7. Blanchard, D., Guibé, O., Redwane, H.: Existence and uniqueness of a solution for a class of parabolic equations with two unbounded nonlinearities. Commun. Pure Appl. Anal. 15(1), 197–217 (2016)

    MathSciNet  Google Scholar 

  8. Blanchard, D., Redwane, H.: Renormalized solutions for a class of nonlinear parabolic evolution problems. J. Math. Pures Appl 77, 117–151 (1998)

    Article  MathSciNet  Google Scholar 

  9. Aberqi, A., Bennouna, J., Hammoumi, M.: Uniqueness of renormalized solutions for a class of parabolic equations. Ric. Mat. 66(2), 629–644 (2017)

    Article  MathSciNet  Google Scholar 

  10. Akdim, Y., Benkirane, A., El Moumni, M., Redwane, H.: Existence of renormalized solutions for strongly nonlinear parabolic problems with measure data. Georgian Math. J. 23(3), 303–321 (2016)

    Article  MathSciNet  Google Scholar 

  11. Benkirane, A., El Hadfi, Y., El Moumni, M.: Existence results for doubly nonlinear parabolic equations with two lower order terms and L1 -data. Ukrainian Math. J. 71(5), 692–717 (2019)

    Article  MathSciNet  Google Scholar 

  12. Ahmedatt, T., Hajji, Y., Hjiaj, H.: Entropy solutions for some non-coercive quasilinear p(x)-parabolic equations with L1-data. J. Elliptic. Parabol. Equ. (2023). https://doi.org/10.1007/s41808-023-00255-3

    Article  Google Scholar 

  13. Bouzelmate, A., Hajji, Y., Hjiaj, H.: Entropy solutions for some nonlinear p(x)-parabolic problems with degenerate coercivity. Rend. Mat. Appl. 44(34), 237–266 (2023)

    Google Scholar 

  14. Salmani, A., Akdim, Y., Mekkour, M.: Renormalized solutions for nonlinear anisotropic parabolic equations. In: 2019 International Conference on Intelligent Systems and Advanced Computing Sciences (ISACS), Taza, Morocco, pp. 1-8 (2019)

  15. Weilin, Z., Yuanchun, R., Wei, W.: Existence and regularity results for anisotropic parabolic equations with degenerate coercivity. arXiv:2303.09386v1

  16. Abdou, M.H., Chrif, M., El Manouni, S., Hjiaj, H.: On a class of nonlinear anisotropic parabolic problems. Proc. Roy. Soc. Edinburgh Sect. A 146A, 1–21 (2016)

    Article  MathSciNet  Google Scholar 

  17. Antontsev, S., Shmarev, S.: Localization of solutions of anisotropic parabolic equations. Nonlinear Anal. 71, 725–737 (2009)

    Article  MathSciNet  Google Scholar 

  18. Chrif, M., El Manouni, S., Hjiaj, H.: On the study of strongly parabolic problems involving anisotropic operators in \(L^{1}\). Monatsh. Math. 195(4), 611–647 (2021)

    Article  MathSciNet  Google Scholar 

  19. Feo, F., Vázquez, J.L., Volzone, B.: Anisotropic p-Laplacian Evolution of Fast Diffusion Type. Adv. Nonlinear Stud. 21, 523–555 (2021)

    Article  MathSciNet  Google Scholar 

  20. Li, F., Zhao, H.: Anisotropic parabolic equations with measure data. J. Partial Differ. Equ. 14, 21–30 (2001)

    MathSciNet  Google Scholar 

  21. Zhan, H., Feng, Z.: Existence and stability of the doubly nonlinear anisotropic parabolic equation. J. Math. Anal. Appl. 497, 1–22 (2020)

    MathSciNet  Google Scholar 

  22. Nardo, R., Feo, F., Guibé, O.: Existence result for nonlinear parabolic equations with lower order terms. Anal. Appl. (Singap.) 2(2), 161–1866 (2011)

    Article  MathSciNet  Google Scholar 

  23. Nardo, R., Feo, F., Guibé, O.: Uniqueness of renormalized solutions to nonlinear parabolic problems with lower order terms. Proc. R. Soc. Edinburgh Sect. A: Math. 143(6), 1185–1208 (2013)

    Article  MathSciNet  Google Scholar 

  24. Boccardo, L., Gallouët, T.: On some nonlinear elliptic and parabolic equations involving measure data. J. Funct. Anal. 87, 149–169 (1989)

    Article  MathSciNet  Google Scholar 

  25. Porzio, M.M.: Existence of solutions for some “noncoercive’’ parabolic equations. Discrete Contin. Dynam. Systems 5(3), 553–568 (1999)

    Article  MathSciNet  Google Scholar 

  26. Mihailescu, M., Pucci, P., Radulescu, V.: Eigenvalue problems for anisotropic quasilinear elliptic equations with variable exponent. J. Math. Anal. Appl. 340, 687–698 (2008)

    Article  MathSciNet  Google Scholar 

  27. Fragalá, I., Gazzola, F., Kawohl, B.: Existence and nonexistence results for anisotropic quasilinear elliptic equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 21, 715–734 (2004)

    Article  MathSciNet  Google Scholar 

  28. Troisi, M.: Teoremi di inclusione per spazi di Sobolev non isotropi. Ricerche mat. 18, 3–24 (1969)

    MathSciNet  Google Scholar 

  29. Simon, J.: Compact set in the space \(L^p(0, T, B)\). Ann. Mat. Pura Appl. 146, 65–96 (1987)

    Article  MathSciNet  Google Scholar 

  30. Bendahmane, M., Wittbold, P., Zimmermann, A.: Renormalized solutions for a nonlinear parabolic equation with variable exponents and L1-data. J. Differ. Equ. 249(6), 1483–1515 (2010)

    Article  Google Scholar 

  31. Lorentz, G.G.: Some new functional spaces. Ann. of Math. 2(51), 37–55 (1950)

    Article  MathSciNet  Google Scholar 

  32. O’Neil, R.: Integral transforms and tensor products on Orlicz space and L(p, q) spaces. J. Analyse Math. 21, 1–276 (1968)

    Article  MathSciNet  Google Scholar 

  33. Lions, J.L.: Quelques methodes de résolution des problèmes aux limites non linéaires. Dunod et Gauthiers-Villars, Paris (1969)

    Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youssef Hajji.

Ethics declarations

Conflict of interest

All authors declare that they have no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Lemma 6

Let \(\displaystyle \psi _{h}(s)=1-\frac{\left| T_{2\,h}(s)- T_{h}(s)\right| }{h}\), then for any \(h\ge 1\) we have

$$\begin{aligned} \displaystyle \int _{Q_{T}}\frac{\partial b_{n}(u_{n})}{\partial t}\psi _{h}(u_{n})(T_{k}(u_{n})-T_{k}(u))dx dt\ge \varepsilon _{4}(n,h). \end{aligned}$$
(121)

1.1 Proof of Lemma 6

Let \(h\ge 1\), we define

$$\begin{aligned} \Psi _{h}(r)&=\displaystyle \int _{0}^{r}\psi _{h}(s)b_{n}'(s)ds\qquad \text{ and }\qquad \overline{\Psi }_{h,k}(r)=\int _{0}^{r}T_{k}(s)b_{n}'(s)\psi _{h}(s)ds. \end{aligned}$$

In view of (57), we have

$$\begin{aligned} \begin{array}{rl} &{}\displaystyle \lim _{\mu \rightarrow \infty }\liminf _{n\rightarrow \infty }\int _{Q_{T}}\frac{\partial \Psi _{h}(u_{n})}{\partial t}(T_{k}(u_{n})-T_{k}(u))dx dt \\ &{} \quad =\displaystyle \liminf _{n\rightarrow \infty }\int _{Q_{T}}\frac{\partial \Psi _{h}(u_{n})}{\partial t}T_{k}(u_{n})dx dt-\int _{Q_{T}}\frac{\partial \Psi _{k}(u)}{\partial t} T_{k}(u)dx dt\\ &{}\quad \displaystyle =\liminf _{n\rightarrow \infty }\int _{\Omega }\overline{\Psi }_{h,k}(u_{n}(T))-\overline{\Psi }_{h,k}(u_{0,n})dx-\int _{\Omega }\overline{\Psi }_{h,k}(u(T))-\overline{\Psi }_{h,k}(u_{0})dx\\ &{}\quad \displaystyle =\liminf _{n\rightarrow \infty }\int _{\Omega }\overline{\Psi }_{h,k}(u_{n}(T))dx-\int _{\Omega }\overline{\Psi }_{h,k}(u(T))dx. \end{array}\nonumber \\ \end{aligned}$$
(122)

On the other hand, it’s easy to see that \(0\le \overline{\Psi }_{h,k}(r)\le B_{n,k}(r)\) and thanks to (32), then

$$\begin{aligned} \int _{\Omega }\overline{\Psi }_{h,k}(u_{n}(T))dx\le \int _{\Omega } B_{n,k}(u_{n}(T))dx\le C_{3} k. \end{aligned}$$

Since \(\displaystyle \overline{\Psi }_{h,k}(u_{n}(T))\rightarrow \overline{\Psi }_{h,k}(u(T))\) a.e. in \(\Omega \), thanks to the Fatou’s lemma we obtain

$$\begin{aligned} \begin{array}{rl} \displaystyle \int _{\Omega }\overline{\Psi }_{h,k}(u(T))dx\le \liminf _{n\rightarrow \infty }\int _{\Omega }\overline{\Psi }_{h,k}(u_{n}(T))dx. \end{array} \end{aligned}$$
(123)

Hence

$$\begin{aligned} \begin{array}{rl} \displaystyle \liminf _{n\rightarrow \infty }\int _{Q_{T}}\frac{\partial \Psi _{h}(u_{n})}{\partial t}(T_{k}(u_{n})-T_{k}(u)))dx dt\ge 0. \end{array} \end{aligned}$$
(124)

Lemma 7

Let \(u\in L^{\infty }(0,T,L^{2}(\Omega ))\cap L^{{\textbf {p}}}(0,T,W^{1,{\textbf {p}}}_{0}(\Omega )),\) then there exists a constant \(C>0\) such that

$$\begin{aligned} \begin{array}{ll} \displaystyle \int _{Q_{T}}|u|^{{\overline{p}}\frac{N+2}{N}}dx dt \le C\Big (\sup _{t\in (0,T)}\int _{\Omega }|u|^{2}dx\Big )^{\frac{{\overline{p}}}{N}}\prod _{i=1}^{N}\Big (\int _{Q_{T}}|D^{i}u|^{p_{i}}dx dt\Big )^{\frac{{\overline{p}}}{Np_{i}}}. \end{array}\nonumber \\ \end{aligned}$$
(125)

1.1.1 Proof of Lemma 7

Let \(t\in [0,T],\) by using Hölder’s and Sobolev inequalities together, we have

$$\begin{aligned} \begin{array}{rl} \displaystyle \int _{\Omega }|u(x,t)|^{{\overline{p}}\frac{N+2}{N}}dx&{}\displaystyle \le \Big (\int _{\Omega }|u(x,t)|^{2}dx\Big )^{\frac{{\overline{p}}}{N}}\Big (\int _{\Omega }|u(x,t)|^{{\overline{p}}^{*}}dx\Big )^{\frac{N-{\overline{p}}}{N}}\\ &{}\displaystyle \le C\Big (\int _{\Omega }|u(x,t)||^{2}dx\Big )^{\frac{{\overline{p}}}{N}}\prod _{i=1}^{N}\Big (\int _{\Omega }|D^{i}u(x,t)|^{p_{i}}dx\Big )^{\frac{{\overline{p}}}{Np_{i}}}. \end{array}\nonumber \\ \end{aligned}$$
(126)

On the other hand, we set \(\displaystyle f_{0}(t)=\int _{\Omega }|u(x,t)|^{2}dx,\) and \( r_{0}=\frac{{\overline{p}}}{N},\) and for \(i=1,\cdots ,N \)

$$\begin{aligned} r_{i}=\frac{Np_{i}}{{\overline{p}}},\quad \hbox { and}\ \ f_{i}(t)=\Big (\int _{\Omega }|D^{i}u(x,t)|^{p_{i}}dx\Big )^{\frac{{\overline{p}}}{Np_{i}}}. \end{aligned}$$

We integrate in (126) on (0, T) and using Hölder’s inequality, we get

$$\begin{aligned} \begin{array}{rl} \displaystyle \int _{0}^{T}\int _{\Omega }|u(x,t)|^{{\overline{p}}\frac{N+2}{N}}dx dt&{}\displaystyle \le C\int _{0}^{T}f_{0}(t)^{r_{0}}\prod _{i=1}^{N}f_{i}(t)dt\\ &{}\displaystyle \le C\sup _{t\in [0,T]}f_{0}(t)^{r_{0}}\int _{0}^{T}\prod _{i=1}^{N}f_{i}(t)dt\\ &{}\displaystyle \le C\sup _{t\in [0,T]}f_{0}(t)^{r_{0}}\prod _{i=1}^{N}\Big (\int _{0}^{T}f_{i}(t)^{r_{i}}dt\Big )^{\frac{1}{r_{i}}}. \end{array} \end{aligned}$$
(127)

Consequently (125) is hold.

Lemma 8

Assume that \(Q_{T}=\Omega \times (0,T)\) with \(\Omega \) is an open bounded subset of \(I\!\!R^{N}\) and \(p_{i}>1\) for \(i=1,\cdots , N\). Let u be a measurable function satisfying

$$\begin{aligned} \displaystyle T_{k}(u)\in L^{\infty }(0,T,L^{2}(\Omega ))\cap L^{{\textbf {p}}}(0,T,W^{1,{\textbf {p}}}_{0}(\Omega )), \end{aligned}$$

for every \(k>0\) and such that

$$\begin{aligned} \begin{array}{rl} \displaystyle \sup _{t\in (0,T)}\int _{\Omega }|T_{k}(u)|^{2}dx+\sum _{i=1}^{N}\int _{0}^{T}\int _{\Omega }|D^{i}T_{k}(u)|^{p_{i}}dx dt\le Mk, \end{array} \end{aligned}$$
(128)

where M is constant, then \(|u|^{\frac{N({\overline{p}}-1)+{\overline{p}}}{N+{\overline{p}}}}\in L^{\frac{N+{\overline{p}}}{N},\infty }(Q_{T})\), and \(|D^{i}u|^{\lambda _{i}}\in L^{\frac{N+2}{N+1},\infty }(Q_{T}),\) with

$$\begin{aligned} \displaystyle \lambda _{i}= \left\{ \begin{array}{lr} \frac{N(p_{i}-1)+p_{i}}{N+2}&{}\hbox { if}\quad p_{i}\le {\overline{p}},\\ \frac{N({\overline{p}}-1)+{\overline{p}}}{N+2}&{}\hbox { if}\quad p_{i}>{\overline{p}}, \end{array} \right. \qquad \hbox { and}\qquad \frac{1}{{\overline{p}}}=\frac{1}{N}\sum _{i=1}^{N}\frac{1}{p_{i}}. \end{aligned}$$

Moreover

$$\begin{aligned} \begin{array}{rl} \Vert |u|^{\frac{N({\overline{p}}-1)+{\overline{p}}}{N+{\overline{p}}}}\Vert _{ L^{\frac{N+{\overline{p}}}{N},\infty }(Q_{T})}\le CM, \end{array} \end{aligned}$$
(129)

and

$$\begin{aligned} \begin{array}{rl} \Vert |D^{i}u|^{\lambda _{i}}\Vert _{ L^{\frac{N+2}{N+1},\infty }(Q_{T})}\le CM+\hbox { meas}(Q_{T})^{\frac{N+1}{N+2}}. \end{array} \end{aligned}$$
(130)

1.1.2 Proof of Lemma 8

Firstly, we prove (129). Thanks to Lemma7 we have

$$\begin{aligned} \begin{array}{rl} \displaystyle \int _{Q_{T}}|T_{k}(u)|^{{\overline{p}}\frac{N+2}{N}}dx dt &{}\le \displaystyle C\Bigg (\sup _{t\in (0,T)}\int _{\Omega }|T_{k}(u)|^{2}dx\Bigg )^{\frac{{\overline{p}}}{N}}\prod _{i=1}^{N}\Bigg (\int _{Q_{T}}|D^{i}T_{k}(u)|^{p_{i}}dx dt\Bigg )^{\frac{{\overline{p}}}{Np_{i}}}\\ &{} \displaystyle \le C(Mk)^{\frac{{\overline{p}}}{N}}(Mk)^{\frac{{\overline{p}}}{N} \sum _{i=1}^{N}\frac{1}{p_{i}}}\\ &{}\displaystyle \le C(Mk)^{\frac{{\overline{p}}}{N}+1}. \end{array}\nonumber \\ \end{aligned}$$
(131)

Let \(k>0\), we have

$$\begin{aligned} \begin{array}{rl} \displaystyle k^{{\overline{p}}\frac{N+2}{N}}\hbox { meas }\{(x,t)\in Q_{T}: |u|>k\}&{}\displaystyle \le \int _{Q_{T}}|T_{k}(u)|^{{\overline{p}}\frac{N+2}{N}}dx dt\\ &{}\le \displaystyle C(Mk)^{\frac{{\overline{p}}}{N}+1}. \end{array} \end{aligned}$$
(132)

By taking \(\displaystyle k=h^{\frac{N+{\overline{p}}}{N({\overline{p}}-1)+{\overline{p}}}}\), we get

$$\begin{aligned} \begin{array}{rl} \displaystyle h^{\frac{{\overline{p}}(N+2)(N+{\overline{p}})}{N(N({\overline{p}}-1)+{\overline{p}})}}\hbox { meas }\{(x,t)\in Q_{T}: |u|^{\frac{N({\overline{p}}-1)+{\overline{p}}}{{N+{\overline{p}}}}}>h\}&{}\displaystyle \le \int _{Q_{T}}|T_{k}(u)|^{{\overline{p}}\frac{N+2}{N}}dx dt\\ &{}\displaystyle \le C(Mh^{\frac{N+{\overline{p}}}{N({\overline{p}}-1)+{\overline{p}}}})^{\frac{{\overline{p}}}{N}+1}. \end{array}\nonumber \\ \end{aligned}$$
(133)

Hence

$$\begin{aligned} \begin{array}{rl} \displaystyle \hbox { meas }\{(x,t)\in Q_{T}: |u|^{\frac{N({\overline{p}}-1)+{\overline{p}}}{{N+{\overline{p}}}}}>h\}\le C(Mh^{-1 })^{\frac{{\overline{p}}}{N}+1}. \end{array} \end{aligned}$$
(134)

We obtain

$$\begin{aligned} \begin{array}{rl} \displaystyle h \hbox { meas }\{(x,t)\in Q_{T}: |u|^{\frac{N({\overline{p}}-1)+{\overline{p}}}{{N+{\overline{p}}}}}>h\}^{\frac{N}{N+{\overline{p}}}}\le CM\qquad \forall h>0. \end{array} \end{aligned}$$
(135)

Thus

$$\begin{aligned} \begin{array}{rl} \displaystyle \Vert |u|^{\frac{N({\overline{p}}-1)+{\overline{p}}}{{N+{\overline{p}}}}}\Vert _{L^{\frac{N+{\overline{p}}}{N},\infty }(Q_{T})}&{}\displaystyle =\sup _{h>0} h\hbox { meas}\{(x,t)\in Q_{T}: |u|^{\frac{N({\overline{p}}-1)+{\overline{p}}}{{N+{\overline{p}}}}}>h\}^{\frac{N}{N+{\overline{p}}}}\\ &{}\displaystyle \le CM. \end{array}\nonumber \\ \end{aligned}$$
(136)

Now, we prove that (130). First case \(p_{i}<{\overline{p}}\), let \(\gamma >1\) and using (128), we have

$$\begin{aligned} \begin{array}{rl} \displaystyle \gamma ^{p_{i}} \hbox { meas }\{(x,t)\in Q_{T}:\ \ |D^{i}u|>\gamma \hbox { and } |u|\le k\}&{}\displaystyle \le \int _{\{|u|\le k\}}|D^{i}u|^{p_{i}}dx dt\\ &{}\displaystyle \le Mk. \end{array}\nonumber \\ \end{aligned}$$
(137)

According to (132) and taking \(\displaystyle \gamma =\mu ^{\frac{N+2}{N(p_{i}-1)+p_{i}}}\), since \(\displaystyle \gamma >1\) then \( \mu >1\). Moreover we can see \( \mu ^{\frac{p_{i}(N+2)}{N(p_{i}-1)+p_{i}}}\ge \mu ^{ \frac{{\overline{p}}(N+2)}{N({\overline{p}}-1)+{\overline{p}}}}\), therefore

$$\begin{aligned} \begin{array}{rl} \displaystyle meas\{(x,t)\in Q_{T}: |D^{i}u|^{\frac{N(p_{i}-1)+p_{i}}{N+2}}>\mu \}\le &{}\frac{Mk}{\mu ^{\frac{p_{i}(N+2)}{N(p_{i}-1)+p_{i}}}}+\frac{C(Mk)^{\frac{{\overline{p}}}{N}+1}}{k^{{\overline{p}}\frac{N+2}{N}}}\\ \displaystyle \le &{} \frac{Mk}{\mu ^{\frac{{\overline{p}}(N+2)}{N({\overline{p}}-1)+{\overline{p}}}}}+\frac{C(Mk)^{\frac{{\overline{p}}}{N}+1}}{k^{{\overline{p}}\frac{N+2}{N}}}. \end{array}\nonumber \\ \end{aligned}$$
(138)

Taking \(\displaystyle k=M^{\frac{1}{N+1}}\mu ^{\frac{N+2}{N+1}\frac{N}{N({\overline{p}}-1)+{\overline{p}}}}\), we conclude that

$$\begin{aligned} \begin{array}{ll} \mu \> meas\{(x,t)\in Q_{T}: |D^{i}u|^{\frac{N(p_{i}-1)+p_{i}}{N+2}}>\mu \}^{\frac{N+1}{N+2}}\le CM \quad \text{ for } \text{ any }\ \mu >1. \end{array}\nonumber \\ \end{aligned}$$
(139)

It follows that

$$\begin{aligned} \begin{array}{rl} \Vert |D^{i}u|^{\lambda _{i}}\Vert _{L^{\frac{N+2}{N+1},\infty }(Q_{T})}&{}\displaystyle =\sup _{\mu> 0}\mu \hbox { meas }\{(x,t)\in Q_{T}: |D^{i}u|^{\frac{N(p_{i}-1)+p_{i}}{N+2}}>\mu \}^{\frac{N+1}{N+2}}\\ &{}\displaystyle \le \hbox { meas }(Q_{T})^{\frac{N+1}{N+2}}+\sup _{\mu> 1}\mu \hbox { meas }\{(x,t)\in Q_{T}: \\ &{}\quad |D^{i}u|^{\frac{N(p_{i}-1)+p_{i}}{N+2}}>\mu \}^{\frac{N+1}{N+2}}\\ &{}\displaystyle \le \hbox { meas }(Q_{T})^{\frac{N+1}{N+2}}+ CM. \end{array}\nonumber \\ \end{aligned}$$
(140)

For the second case of \(p_{i}>{\overline{p}}\): Let \(\gamma >1\), we have

$$\begin{aligned} \begin{array}{rl} \gamma ^{{\overline{p}}}\hbox { meas }\{(x,t)\in Q_{T}: |D^{i}u|>\gamma \hbox { and} |u|\le k\}&{}\displaystyle \le \int _{\{|u|\le k\}}|D^{i}u|^{{\overline{p}}}dx dt\\ {} &{}\displaystyle \le \int _{\{|u|\le k\}}|D^{i}u|^{p_{i}}dx dt\\ &{}\displaystyle \le Mk. \end{array}\nonumber \\ \end{aligned}$$
(141)

By taking \(\gamma = \mu ^{\frac{N+2}{N({\overline{p}}-1)+{\overline{p}}}}\), we obtain

$$\begin{aligned} \begin{array}{rl} \displaystyle meas\{(x,t)\in Q_{T}: |D^{i}u|^{\frac{N({\overline{p}}-1)+{\overline{p}}}{N+2}}>\mu \} \le \frac{Mk}{\mu ^{\frac{{\overline{p}}(N+2)}{N({\overline{p}}-1)+{\overline{p}}}}}+\frac{C(Mk)^{\frac{{\overline{p}}}{N}+1}}{k^{{\overline{p}}\frac{N+2}{N}}}. \end{array}\qquad \end{aligned}$$
(142)

Similarly as in the first case, we deduce that

$$\begin{aligned} \begin{array}{rl} \Vert |D^{i}u|^{\lambda _{i}}\Vert _{L^{\frac{N+2}{N+1},\infty }(Q_{T})}\le \hbox { meas}(Q_{T})^{\frac{N+1}{N+2}}+ CM. \end{array} \end{aligned}$$
(143)

Lemma 9

Assume that \(Q_{T}=\Omega \times (0,T)\) with \(\Omega \) open subset of \(I\!\!R^{N}\) of finite measure and \(p_{i}>1\), for \(i=1,\cdots , N\). Let u be a measurable function satisfying

$$\begin{aligned} \displaystyle T_{k}(u)\in L^{\infty }(0,T,L^{2}(\Omega ))\cap L^{{\textbf {p}}}(0,T,W_{0}^{1,{\textbf {p}}}(\Omega )), \end{aligned}$$

for every \(k>0\) and \(\frac{2(N+1)}{N+2}<\alpha \le {\underline{p}}\) such that

$$\begin{aligned} \begin{array}{rl} \displaystyle \sup _{t\in (0,T)}\int _{\Omega }|T_{k}(u)|^{2}dx\le Mk\quad \hbox { and }\quad \displaystyle \int _{0}^{T}\int _{\Omega }|\nabla T_{k}(u)|^{\alpha }dx dt\le C_{0}( Mk)^{\frac{\alpha }{2}}, \end{array}\nonumber \\ \end{aligned}$$
(144)

where M and \(C_{0}\) is constant, then

$$\begin{aligned} \begin{array}{rl} \Vert u\Vert _{ L^{\frac{\alpha (N+2)}{2N},\infty }(Q_{T})}\le C M, \end{array} \end{aligned}$$
(145)

and

$$\begin{aligned} \begin{array}{rl} \Vert |\nabla u|\Vert _{ L^{\frac{\alpha (N+2)}{2(N+1)},\infty }(Q_{T})}\le C M, \end{array} \end{aligned}$$
(146)

where C is a constant depending only on N and \(C_{0}\).

1.1.3 Proof of Lemma 9

since \(\alpha <{\underline{p}}\), we have \(\displaystyle L^{\textbf{p}}(0,T,W_{0}^{1,\textbf{p}}(\Omega )))\hookrightarrow L^{\alpha }(0,T,W_{0}^{1,\alpha }(\Omega )))\) is a continous embedding. By applying Gagliardo-Nirenberg and Höder inequality we get

$$\begin{aligned} \begin{array}{rl} \displaystyle \int _{Q_{T}}|T_{k}(u)|^{\alpha \frac{N+2}{N}}dx dt &{}\le \displaystyle C\Bigg (\sup _{t\in (0,T)}\int _{\Omega }|T_{k}(u)|^{2}dx\Bigg )^{\frac{\alpha }{N}}\int _{Q_{T}}|\nabla T_{k}(u)|^{\alpha }dx dt\\ &{}\displaystyle \le C(Mk)^{\frac{\alpha (N+2)}{2N}} \end{array} \end{aligned}$$
(147)

It follows that: for every \(k>0\) we have

$$\begin{aligned} \displaystyle k \hbox { meas }\{(x.t)\in Q_{T}: |u|>k\}^{\frac{2N}{\alpha (N+2)}}\le C M. \end{aligned}$$
(148)

Hence the estimation (145) hold true.

Now, we will prove (146). Using (147), we have

$$\begin{aligned} \begin{array}{rl} \displaystyle \text{ meas }\{(x,t)\in Q_{T}: |\nabla u|>\gamma \}&{}{}\le \displaystyle \text{ meas }\{(x,t)\in Q_{T}: |\nabla u|>\gamma \text{ and }\> |u|\le k\}\\ {} &{}{}\displaystyle \qquad + \text{ meas }\{(x,t)\in Q_{T}: |\nabla u|>\gamma \> \text{ and }\> |u|>k\}\\ {} &{}{}\displaystyle \quad \le \frac{\int _{\{|u|\le k\}}|\nabla u|^{\alpha }dx dt}{\gamma ^{\alpha }}+\frac{C(Mk)^{\frac{\alpha (N+2)}{2N}}}{k^{\frac{\alpha (N+2)}{N}}}\\ {} &{}{}\displaystyle \quad \le \frac{C_{0}(Mk)^{\frac{\alpha }{2}}}{\gamma ^{\alpha }}+\frac{C(Mk)^{\frac{\alpha (N+2)}{2N}}}{k^{\frac{\alpha (N+2)}{N}}}. \end{array} \end{aligned}$$
(149)

By taking \(k=\gamma ^{\frac{N}{N+1}}M^{\frac{1}{N+1}}\), we can conclude for any \(\gamma >0\)

$$\begin{aligned} \begin{array}{rl} \displaystyle \gamma \hbox { meas }\{(x,t)\in Q_{T}: |\nabla u|>\gamma \}^{\frac{2(N+1)}{\alpha (N+2)}}\le C M. \end{array} \end{aligned}$$
(150)

It follows that

$$\begin{aligned} \begin{array}{rl} \Vert |\nabla u|\Vert _{ L^{\frac{\alpha (N+2)}{2(N+1)},\infty }(Q_{T})}\le C M. \end{array} \end{aligned}$$
(151)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajji, Y., Hjiaj, H. Existence and Uniqueness Solutions for Some Strongly Quasilinear Parabolic Problems in Anisotropic Sobolev Spaces. Results Math 79, 175 (2024). https://doi.org/10.1007/s00025-024-02191-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-024-02191-7

Keywords

Mathematics Subject Classification

Navigation