Skip to main content
Log in

Steady States and Universal Conductance in a Quenched Luttinger Model

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We obtain exact analytical results for the evolution of a 1+1-dimensional Luttinger model prepared in a domain wall initial state, i.e., a state with different densities on its left and right sides. Such an initial state is modeled as the ground state of a translation invariant Luttinger Hamiltonian \({H_{\lambda}}\) with short range non-local interaction and different chemical potentials to the left and right of the origin. The system evolves for time t >  0 via a Hamiltonian \({H_{\lambda'}}\) which differs from \({H_{\lambda}}\) by the strength of the interaction. Asymptotically in time, as \({t \to \infty}\), after taking the thermodynamic limit, the system approaches a translation invariant steady state. This final steady state carries a current I and has an effective chemical potential difference \({\mu_{+} - \mu_{-}}\) between right- (+) and left- (−) moving fermions obtained from the two-point correlation function. Both I and \({\mu_{+} - \mu_{-}}\) depend on \({\lambda}\) and \({\lambda'}\). Only for the case \({\lambda = \lambda' = 0}\) does \({\mu_{+} - \mu_{-}}\) equal the difference in the initial left and right chemical potentials. Nevertheless, the Landauer conductance for the final state, \({G = I/(\mu_{+} - \mu_{-})}\), has a universal value equal to the conductance quantum \({e^2/h}\) for the spinless case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eisert J., Friesdorf M., Gogolin C.: Quantum many-body systems out of equilibrium. Nat. Phys. 11, 124 (2015)

    Article  Google Scholar 

  2. Polkovnikov A., Sengupta K., Silva A., Vengalattore M.: Colloquium: Nonequilibrium dynamics of closed interacting quantum systems. Rev. Mod. Phys. 83, 863 (2011)

    Article  ADS  Google Scholar 

  3. Gogolin C., Müller M.P., Eisert J.: Absence of thermalization in nonintegrable systems. Phys. Rev. Lett. 106, 040401 (2011)

    Article  ADS  Google Scholar 

  4. Goldstein S., Huse D.A., Lebowitz J.L., Tumulka R.: Thermal equilibrium of a macroscopic quantum system in a pure state. Phys. Rev. Lett. 115, 100402 (2015)

    Article  ADS  Google Scholar 

  5. Rigol M., Dunjko V., Yurovsky V., Olshanii M.: Relaxation in a completely integrable many-body quantum system: An ab initio study of the dynamics of the highly excited states of 1D lattice hard-core bosons. Phys. Rev. Lett. 98, 050405 (2007)

    Article  ADS  Google Scholar 

  6. Spohn H., Lebowitz J.L.: Stationary non-equilibrium states of infinite harmonic systems. Commun. Math. Phys. 54, 97 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  7. Jakšić V., Pillet C.-A.: Non-equilibrium steady states of finite quantum systems coupled to thermal reservoirs. Commun. Math. Phys. 226, 131 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Jakšić V., Pillet C.-A.: Mathematical theory of non-equilibrium quantum statistical mechanics. J. Stat. Phys. 108, 787 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Aschbacher W., Jakšić V., Pautrat Y., Pillet C.-A.: Transport properties of quasi-free fermions. J. Math. Phys. 48, 032101 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Dhar A.: Heat transport in low-dimensional systems. Adv. Phys. 57, 457 (2008)

    Article  ADS  Google Scholar 

  11. Bonetto, F., Lebowitz, J.L., Rey-Bellet, L.: Fourier’s law: a challenge to theorists. In: Fokas, A. et al. (eds.) Mathematical Physics, pp. 128–150. Imperial College Press, London (2000)

  12. Lepri S., Livi R., Politi A.: Thermal conduction in classical low-dimensional lattices. Phys. Rep. 377, 1 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  13. Basile G., Olla S.: Energy diffusion in harmonic system with conservative noise. J. Stat. Phys. 155, 1126 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Basile G., Olla S., Spohn H.: Energy transport in stochastically perturbed lattice dynamics. Arch. Ration. Mech. Anal. 195, 171 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Rieder Z., Lebowitz J.L., Lieb E.: Properties of a harmonic crystal in a stationary nonequilibrium state. J. Math. Phys. 8, 1073 (1967)

    Article  ADS  Google Scholar 

  16. Lindblad G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Lepri S., Mejía-Monasterio C., Politi A.: A stochastic model of anomalous heat transport: analytical solution of the steady state. J. Phys. A: Math. Theor. 42, 025001 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Ajanki O., Huveneers F.: Rigorous scaling law for the heat current in disordered harmonic chain. Commun. Math. Phys. 301, 841 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Antal T., Rácz Z., Rákos A., Schütz G.M.: Transport in the XX chain at zero temperature: Emergence of flat magnetization profiles. Phys. Rev. E. 59, 4912 (1999)

    Article  ADS  Google Scholar 

  20. Abraham D.B., Barouch E., Gallavotti G., Martin-Löf A.: Dynamics of a local perturbation in the X-Y model II—Excitations. Stud. Appl. Math. 51, 211 (1972)

    Article  Google Scholar 

  21. Liu W., Andrei N.: Quench dynamics of the anisotropic Heisenberg model. Phys. Rev. Lett. 112, 257204 (2014)

    Article  ADS  Google Scholar 

  22. Sabetta T., Misguich G.: Nonequilibrium steady states in the quantum XXZ spin chain. Phys. Rev. B 88, 245114 (2013)

    Article  ADS  Google Scholar 

  23. Lancaster J., Mitra A.: Quantum quenches in an XXZ spin chain from a spatially inhomogeneous initial state. Phys. Rev. E. 81, 061134 (2010)

    Article  ADS  Google Scholar 

  24. Luttinger J.M.: An exactly soluble model of a many-fermion system. J. Math. Phys. 4, 1154 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  25. Tomonaga S.: Remarks on Bloch’s method of sound waves applied to many-fermion problems. Prog. Theor. Phys. 5, 544 (1950)

    Article  ADS  MathSciNet  Google Scholar 

  26. Mattis D.C., Lieb E.H.: Exact solution of a many-fermion system and its associated boson field. J. Math. Phys. 6, 304 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  27. Cazalilla M.A.: Effect of suddenly turning on interactions in the Luttinger model. Phys. Rev. Lett. 97, 156403 (2006)

    Article  ADS  Google Scholar 

  28. Iucci A., Cazalilla M.A.: Quantum quench dynamics of the Luttinger model. Phys. Rev. A. 80, 063619 (2009)

    Article  ADS  Google Scholar 

  29. Mastropietro V., Wang Z.: Quantum quench for inhomogeneous states in the nonlocal Luttinger model. Phys. Rev. B. 91, 085123 (2015)

    Article  ADS  Google Scholar 

  30. Haldane F.D.M.: ‘Luttinger liquid theory’ of one-dimensional quantum fluids. I. Properties of the Luttinger model and their extension to the general 1D interacting spinless Fermi gas. J. Phys. C: Solid State Phys. 14, 2585 (1981)

    Article  ADS  Google Scholar 

  31. Voit J.: One-dimensional Fermi liquids. Rep. Prog. Phys. 58, 977 (1995)

    Article  ADS  Google Scholar 

  32. Benfatto G., Gallavotti G., Mastropietro V.: Renormalization group and the Fermi surface in the Luttinger model. Phys. Rev. B. 45, 5468 (1992)

    Article  ADS  Google Scholar 

  33. Langmann E., Moosavi P.: Construction by bosonization of a fermion-phonon model. J. Math. Phys. 56, 091902 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Kane C.L., Fisher M.P.A.: Transport in a one-channel Luttinger liquid. Phys. Rev. Lett. 68, 1220 (1992)

    Article  ADS  Google Scholar 

  35. Landauer R.: Electrical resistance of disordered one-dimensional lattices. Philos. Mag. 21, 863 (1970)

    Article  ADS  Google Scholar 

  36. Alekseev A.Y., Cheianov V.V., Fröhlich J.: Universality of transport properties in equilibrium, the Goldstone theorem, and chiral anomaly. Phys. Rev. Lett. 81, 3503 (1998)

    Article  ADS  Google Scholar 

  37. Alekseev A.Y., Cheianov V.V., Fröhlich J.: Comparing conductance quantization in quantum wires and quantum Hall systems. Phys. Rev. B 54, R17320 (1996)

    Article  ADS  Google Scholar 

  38. Maslov D.L., Stone M.: Landauer conductance of Luttinger liquids with leads. Phys. Rev. B 52, R5539 (1995)

    Article  ADS  Google Scholar 

  39. Kawabata A.: On the renormalization of conductance in Tomonaga-Luttinger liquid. J. Phys. Soc. Jpn. 65, 30 (1996)

    Article  ADS  Google Scholar 

  40. Reed M., Simon B.: Methods of Modern Mathematical Physics, Vol. I. Functional Analysis. Academic Press, Cambridge (1972)

    MATH  Google Scholar 

  41. de Woul, J., Langmann, E.: Exact solution of a 2D interacting fermion model. Commun. Math. Phys. 314, 1 (2012)

  42. Carey A.L., Hurst C.A.: A note on the boson-fermion correspondence and infinite dimensional groups. Commun. Math. Phys. 98, 435 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Bruneau L., Jakšić V., Last Y., Pillet C.-A.: Landauer-Büttiker and Thouless conductance. Commun. Math. Phys. 338, 347 (2015)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Per Moosavi.

Additional information

Communicated by H. Spohn

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Langmann, E., Lebowitz, J.L., Mastropietro, V. et al. Steady States and Universal Conductance in a Quenched Luttinger Model. Commun. Math. Phys. 349, 551–582 (2017). https://doi.org/10.1007/s00220-016-2631-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-016-2631-x

Keywords

Navigation