Skip to main content
Log in

A note on the boson-fermion correspondence and infinite dimensional groups

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We show how to construct irreducible projective representations of the infinite dimensional Lie group Map (S 1,\(\mathbb{T}\)), by embedding it into the group of Bogoliubov automorphisms of the CAR. Using techniques of G. Segal for extending certain representations of Map (S 1, SU(2)) we show that our representations extend to give representations of a certain infinite dimensional superalgebra. We relate our work to the well known boson-fermion correspondence which exists in 1+1 dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Frenkel, I.B., Kac, V.G.: Invent. Math.62, 23–66 (1980)

    Google Scholar 

  2. Frenkel, I.B.: J. Funct. Anal.44, 259–327 (1981)

    Google Scholar 

  3. Carey, A.L., Hurst, C.A., O'Brien, D.M.: Fermion currents in 1 + 1 dimensions. J. Math. Phys.24, 2212–2221 (1983)

    Google Scholar 

  4. Segal, G.: Unitary representations of some infinite dimensional groups. Commun. Math. Phys.80, 301–362 (1981)

    Google Scholar 

  5. Dell'Antonio, G.F., Frishman, Y., Zwanziger, D.: Thirring model in terms of currents: Solution and light-one expansions. Phys. Rev. D6, 988–1007 (1972)

    Google Scholar 

  6. Coleman, S.: Quantum sine-Gordon equation as a massive Thirring model. Phys. Rev. D11, 2088–2097 (1975)

    Google Scholar 

  7. Ringwood, G.A.: The fermion-boson correspondence is a Klein transformation. Nuovo Cimento54A, 483–494 (1979)

    Google Scholar 

  8. Ruijsenaars, S.N.M.: Integrable quantum field theories and Bogoliubov transformations. Ann. Phys.132, 328–382 (1981)

    Google Scholar 

  9. Heindenreich, R., Seiler, R., Uhlenbrock, D.A.: The Luttinger model. J. Stat. Phys.22, 27 (1980)

    Google Scholar 

  10. Carey, A.L., Hurst, C.A., O'Brien, D.M.: J. Funct. Anal.48, 360–393 (1982)

    Google Scholar 

  11. Carey, A.L., O'Brien, D.M.: Absence of vacuum polarisation in Fock space. Lett. Math. Phys.6, 335–340 (1982)

    Google Scholar 

  12. Douglas, R.G.: Banach algebra techniques in operator theory. New York: Academic Press 1972

    Google Scholar 

  13. Baggett, L., Kleppner, A.: J. Funct. Anal.14, 299–324 (1978)

    Google Scholar 

  14. Hannabuss, K.C.: J. Funct. Anal.34, 144–165 (1979)

    Google Scholar 

  15. Kleppner, A.: Math Ann.158, 11–34 (1965)

    Google Scholar 

  16. Lundberg, L.-E.: Quasi-free “second quantization”. Commun. Math. Phys.50, 103–112 (1976) The calculations immediately preceding Theorem 2.3 may also be found in the unpublished paper of L.E. Lundberg: Observable algebra approach to the Thirring-Schwinger model

    Google Scholar 

  17. Ruijsenaars, S.N.M.: On Bogoliubov transformations for systems of relativistic charged particles. J. Math. Phys.18, 517–526 (1977)

    Google Scholar 

  18. Uhlenbrock, D.A.: Fermions and associated bosons of one-dimensional model. Commun. Math. Phys.4, 94 (1967)

    Google Scholar 

  19. Streater, R.F.: In: Physical reality and mathematical description. Enz, C.P., Mehra, J. (eds.). Boston: Reidel 1974

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H. Araki

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carey, A.L., Hurst, C.A. A note on the boson-fermion correspondence and infinite dimensional groups. Commun.Math. Phys. 98, 435–448 (1985). https://doi.org/10.1007/BF01209324

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01209324

Keywords

Navigation